Study on the influence of magnesium doping on the magnetic properties of spinel Zn-Mg ferrite

Materials Today Communications - Tập 26 - Trang 101734 - 2021
Zhanjun Zhang1
1School of Information & Electronic Engeering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, China

Tài liệu tham khảo

Petrova, 2019, Influence of synthesis methods on structural and magnetic characteristics of Mg–Zn-ferrite nanopowders, J. Magn. Magn. Mater., 473, 85, 10.1016/j.jmmm.2018.09.128 Abbas, 2020, Structural, dielectric and magnetic properties of (ZnFe2O4/Polystyrene) nanocomposites synthesized by micro-emuslion technique, Ceram. Int., 46, 5920, 10.1016/j.ceramint.2019.11.045 Yao, 2007, ZnFe2O4 nanocrystals: synthesis and magnetic properties, J. Phys. Chem. C, 111, 12274, 10.1021/jp0732763 Sohn, 1997, Processible optically transparentblock copolymer films containing superparamagnetic iron oxide nanoclusters, Chem. Mater., 9, 264, 10.1021/cm960339d Liu, 2005, Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials, Sensor. Actuat. B-Chem., 107, 600, 10.1016/j.snb.2004.11.026 Gopal Reddy, 2000, Preparation and characterization of ferrites as gas sensor materials, J. Mater. Sci. Lett., 19, 775, 10.1023/A:1006716721984 Satyanarayana, 2003, Nanosized spinel NiFe2O4: a novel material for the detection of liquefied petroleum gas in air, Mater. Chem. Phys., 82, 21, 10.1016/S0254-0584(03)00170-6 Xing, 2012, One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries, Nano Res., 5, 477, 10.1007/s12274-012-0233-2 Tsaya, 2019, Investigation on structural, magnetic, and FMR properties for hydrothermally-synthesized magnesium-zinc ferrite nanoparticles, Physica B: Conden. Matt., 570, 29, 10.1016/j.physb.2019.05.037 Verma, 2004, Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal methods, Mater. Lett., 58, 1092, 10.1016/j.matlet.2003.08.025 Lodhi, 2014, New Mg0.5CoxZn0.5-xFe2O4 nano-ferrites: structural elucidation and electromagnetic behavior evaluation, Curr. Appl. Phys., 14, 716, 10.1016/j.cap.2014.02.021 Manohar, 2019, Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal reflux method, Appli. Phys. A, 125, 477, 10.1007/s00339-019-2760-0 Kurian, 2018, Structural, magnetic and mossbauer studies of magnesium ferrite nanoparticles prepared by hydrothermal method, Inter. J. Nano., 17 Somvanshi, 2020, Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinel zinc ferrite (ZnFe2O4): thermal, structural, spectral, optical and physisorption analysis, Ceram. Int., 46, 8640, 10.1016/j.ceramint.2019.12.097 Chakrabarty, 2015, Structural, optical and electrical properties of chemically derived nickel substituted zinc ferrite nanocrystals, Mater. Chem. Phys., 153, 221, 10.1016/j.matchemphys.2015.01.006 Somvanshi, 2020, Hydrophobic to hydrophilic surface transformation of nano-scale zinc ferrite via oleic acid coating: magnetic hyperthermia study towards biomedical applications, Ceram. Int., 46, 7642, 10.1016/j.ceramint.2019.11.265 Jang, 2009 Bárcena, 2008, Zinc ferrite na-noparticles as MRI contrast agents, Chem. Commun, 2224, 10.1039/b801041b Somvanshi, 2020 Das, 2015, Investigations of superparamagnetism in magnesium ferrite nano-sphere synthesized by ultrasonic spray pyrolysis technique for hyperthermia application, J. Magn. Magn. Mater, 392, 91, 10.1016/j.jmmm.2015.05.029 Malaie, 2018, Hydrothermal growth of magnesium ferrite rose nanoflowers on nickel foam; application in high-performance asym-metric supercapacitors, J. Mater. Sci. Mater. Electron., 29, 650, 10.1007/s10854-017-7958-3 John, 2019, Determination of ferromagnetic, superparamagnetic and paramagnetic components of magnetization and the effect of magnesium substitution on structural, magnetic and hyperfine properties of zinc ferrite nanoparticles, J. Magn. Magn. Mater., 475, 160, 10.1016/j.jmmm.2018.11.030 Fella, 2013, Microstructural studies of milled and annealed ZnFe2O4 nanostructures using X-ray diffraction and Mössbauer, Spectroscopy, 1, 1 Veith, 2005, Single source precursor approach for the sol-gel synthesis of nanocrystalline ZnFe2O4 and zinc-iron oxide composites, Chem. Mater., 17, 95, 10.1021/cm0401802 Li, 2007, Magnetic properties of ZnFe2O4 nanoparticles produced by a low-temperature solid-state reaction method, J. Magn. Magn. Mater., 309, 295, 10.1016/j.jmmm.2006.07.012 Xing, 2012, One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries, Nano Res., 5, 477, 10.1007/s12274-012-0233-2 Ait Kerroum, 2019, The effect of basic pH on the elaboration of ZnFe2O4 nanoparticles by coprecipitation method: structural, magnetic and hyperthermia characterization, J. Magn. Magn. Mater., 478, 239, 10.1016/j.jmmm.2019.01.081 Shahraki, 2012, Structural characterization and magnetic properties of superparamagnetic zinc ferrite nanoparticles synthesized by the coprecipitation method, J. Magn. Magn. Mater., 324, 3762, 10.1016/j.jmmm.2012.06.020 Singh, 2016, Structural, thermal and magnetic studies of MgxZn1−xFe2O4 nanoferrites: study of exchange interactions on magnetic anisotropy, Ceram. Int., 42, 19188, 10.1016/j.ceramint.2016.09.081 Lazarević, 2015, Spetroscopy investigation of nanostructured nickel-zinc ferrite obtained by mechanochemical synthesis, Mater. Res. Bull., 63, 239, 10.1016/j.materresbull.2014.12.005 Murthy, 1962 Singh, 2016, Electronic structure studies of chemically synthesized MgFe2O4 nanoparticles, J. Mol. Struct., 1108, 444, 10.1016/j.molstruc.2015.12.002 Kim, 2001, Magnetic properties of NiZnCu ferrite powders and thin films prepared by a sol-gel method, IEEE. Trans. Magn., 37, 2362, 10.1109/20.951173 Hamdeh, 1997, Magnetic properties of partially-inverted zinc ferrite aerogel powders, J. Appl. Phys., 81, 1851, 10.1063/1.364068 Jeyadevan, 1994, Structure analysis of coprecipitated ZnFe2O4 by extended X-ray absorption fine structure, J. Appl. Phys., 76, 6325, 10.1063/1.358255 Mittal, 2006, Cation distribution in NixMg1-xFe2O4 studied by XPS and Mossbauer spectroscopy, Solid State Commun., 137, 6, 10.1016/j.ssc.2005.10.019 Yamashita, 2008, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci., 254, 2441, 10.1016/j.apsusc.2007.09.063 Bhosale, 1998, Thermal study of ferritization temperature of Cu–Mg–Zn ferrites: TG/DTG/DTA (STA) studies, Thermochim. Acta, 316, 159, 10.1016/S0040-6031(98)00360-8 Yao, 2007, ZnFe2O4 nanocrystals: synthesis and magnetic properties, J. Phys. Chem. C, 111, 12274, 10.1021/jp0732763 Li, 2007, Magnetic properties of ZnFe2O4 nanoparticles produced by a low-temperature solid-state reaction method, J. Magn. Magn. Mater., 309, 295, 10.1016/j.jmmm.2006.07.012 Singh, 2016, Structural, thermal and magnetic studies of MgxZn1−xFe2O4 nanoferrites: study of exchange interactions on magnetic anisotropy, Ceram. Int., 42, 19188, 10.1016/j.ceramint.2016.09.081