Nghiên cứu về việc cải thiện tính chất sol-gel thông qua công nghệ hợp chất nhị phân cho việc đánh bóng khô các vật liệu cứng và giòn

Shengui Huang1,2, Jing Lu1, Yingchao Lin1, Yiqing Yu2,1, Xipeng Xu2,1, Changcai Cui2,1
1Institute of Manufacturing Engineering, Huaqiao University, Xiamen, PR China
2College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, PR China

Tóm tắt

Bộ đệm đánh bóng sol-gel (SG) mới phát triển dựa trên hệ hợp chất nhị phân alginate natri (AGS) có thể được sử dụng để đánh bóng khô các vật liệu cứng và giòn nhằm đạt được bề mặt chất lượng cao. Dựa trên công nghệ đánh bóng SG linh hoạt, một vật liệu sinh học phù hợp được lựa chọn, và công nghệ hợp chất nhị phân được sử dụng để chuẩn bị hệ thống gel hợp chất nhị phân AGS, từ đó tối ưu hóa khả năng giữ nước và các thuộc tính cơ học của gel. Thông qua các thí nghiệm đánh bóng khô vật liệu SiC cứng và giòn, những lợi thế của bộ đệm đánh bóng SG dựa trên hệ hợp chất nhị phân alginate natri-gum xanthan (AX) trong điều kiện đánh bóng khô là rõ rệt. Độ bền của bộ đệm đánh bóng SG được cải thiện đáng kể so với hệ thống đơn AGS, từ đó hiệu quả giải quyết vấn đề ô nhiễm gây ra bởi nước thải đánh bóng trong quá trình đánh bóng ướt. Đồng thời, tỷ lệ loại bỏ vật liệu cao sẽ rút ngắn đáng kể thời gian gia công các vật liệu cứng và giòn, cải thiện hiệu suất sản xuất. Những kết quả này sẽ tạo nền tảng cho việc công nghiệp hóa quy trình đánh bóng khô với bộ đệm đánh bóng SG.

Từ khóa

#sol-gel #alginate natri #vật liệu cứng #vật liệu giòn #hợp chất nhị phân #đánh bóng khô

Tài liệu tham khảo

Wang Y, Guangheng D, Zhao J et al. (2019) Study on key factors influencing the surface generation in rotary ultrasonic grinding for hard and brittle materials. J Manuf Process 38:549–555. https://doi.org/10.1016/j.jmapro.2019.01.046

Guo L, Zhang X, Chen S, Hui J (2019) An experimental study on the precision abrasive machining process of hard and brittle materials with ultraviolet-resin bond diamond abrasive tools. Materials 12:1–11. https://doi.org/10.3390/ma12010125

Guo B, Zhao Q (2019) Ultra-precision machining of hard and brittle materials with coarse-grained grinding wheels. Springer Tracts Mech Eng 201–236. https://doi.org/10.1007/978-981-13-3335-4_8

Huang S, Lu J, Chen S et al. (2019) Study on the surface quality of marble tiles polished with Sol-Gel derived pads. J Sol-Gel Sci Technol 91:485–495. https://doi.org/10.1007/s10971-019-05041-z

Hashimoto F, Yamaguchi H, Krajnik P et al. (2016) Abrasive fine-finishing technology. CIRP Ann Manuf Technol 65:597–620. https://doi.org/10.1016/j.cirp.2016.06.003

lu J, li Y, Xu X (2015) The effects of abrasive yielding on the polishing of SiC wafers using a semi-fixed flexible pad. Proc Inst Mech Eng, Part B: J Eng Manuf 229:170–177. https://doi.org/10.1177/0954405414563556

Yuan J, Zhang F, Dai Y et al. (2010) Development research of science and technologies in ultra-precision machining field. Jixie Gongcheng Xuebao/J Mech Eng 46:161–177. https://doi.org/10.3901/JME.2010.15.161

Nakamura H, Yan J, Syoji K, Wakamatsu Y (2003) Development of a polishing disc containing granulated fine abrasives. Key Eng Mater 238–239:257–262. https://doi.org/10.4028/www.scientific.net/kem.238-239.257

Yamamoto Y, Maeda H, Shibutani H et al. (2004) A study on constant-pressure grinding with EPD pellets. Key Eng Mater 257–258:135–138. https://doi.org/10.4028/www.scientific.net/kem.257-258.135

Shimada K, Akagami Y, Fujita T et al. (2002) Characteristics of magnetic compound fluid (MCF) in a rotating rheometer. J Magn Magn Mater 252:235–237. https://doi.org/10.1016/S0304-8853(02)00646-7

Deng QF, Yuan JL, Lü BH et al. (2012) Influences of semi-fixed abrasive tool characteristics on tool wear and material removal in processing. Nami Jishu yu Jingmi Gongcheng/Nanotechnol Precis Eng 10:89–94

Xu Y, Lu J, Xu X et al. (2018) Study on high efficient sapphire wafer processing by coupling SG-mechanical polishing and GLA-CMP. Int J Mach Tools Manuf 130–131:12–19. https://doi.org/10.1016/j.ijmachtools.2018.03.002

Lu J, Xu Y, Zhang Y, Xu X (2017) The effects of SiO2 coating on diamond abrasives in sol-gel tool for SiC substrate polishing. Diam Relat Mater 76:123–131. https://doi.org/10.1016/j.diamond.2017.05.003

Xu X, Liu J, Yu Y, Lu J (2013) Fabrication and application of gel-bonded abrasive tools for grinding and polishing tools. Jixie Gongcheng Xuebao/J Mech Eng 49:156–162. https://doi.org/10.3901/JME.2013.19.156

Park C, Kim H, Lee S, Jeong H (2015) The influence of abrasive size on high-pressure chemical mechanical polishing of sapphire wafer. Int J Precis Eng Manuf - Green Technol 2:157–162. https://doi.org/10.1007/s40684-015-0020-0

Lee H (2017) Environmental impact of concentration of slurry components in thick copper CMP. Int J Precis Eng Manuf - Green Technol 4:13–18. https://doi.org/10.1007/s40684-017-0002-5

Lu J, Xu Y, Zhang D, Xu X (2017) The synthesis of the core/shell structured diamond/akageneite hybrid particles with enhanced polishing performance. Materials 10:673–680. https://doi.org/10.3390/ma10060673

Lu J, Luo Q, Xu X et al. (2019) Removal mechanism of 4H- and 6H-SiC substrates (0001 and 0001) in mechanical planarization machining. Proc Inst Mech Eng, Part B: J Eng Manuf 233:69–76. https://doi.org/10.1177/0954405417718595

Xu Y, Lu J, Xu X (2019) Pollution-free approaches for highly efficient sapphire substrate processing by mechanical chemical polishing. Catalysts 9:594. https://doi.org/10.3390/catal9070594

Gorbanenko O (2017) A dry polishing technique for the petrographic examination of mudrocks. Int J Coal Geol 180:122–126. https://doi.org/10.1016/j.coal.2017.03.013

Deng H, Takiguchi T, Ueda M et al. (2011) Damage-Free Dry Polishing of 4H-SiC Combined with Atmospheric-Pressure Water Vapor Plasma Oxidation. Jpn J Appl Phys 50:08JG05. https://doi.org/10.1143/JJAP.50.08JG05

Li Y, Wu Y, Zhou L, Fujimoto M (2014) Vibration-assisted dry polishing of fused silica using a fixed-abrasive polisher. Int J Mach Tools Manuf 77:93–102. https://doi.org/10.1016/j.ijmachtools.2013.10.005

Vanin FM, Sobral PJA, Menegalli FC et al. (2005) Effects of plasticizers and their concentrations on thermal and functional properties of gelatin-based films. Food Hydrocoll 19:899–907. https://doi.org/10.1016/j.foodhyd.2004.12.003

Olivas GI, Barbosa-Cánovas GV (2008) Alginate-calcium films: Water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT - Food Sci Technol 41:359–366. https://doi.org/10.1016/j.lwt.2007.02.015

Li B, Kennedy JF, Jiang QG, Xie BJ (2006) Quick dissolvable, edible and heatsealable blend films based on konjac glucomannan - Gelatin. Food Res Int 39:544–549. https://doi.org/10.1016/j.foodres.2005.10.015

Zheng H, Zhang Q, Jiang K et al. (1996) Critical behavior of viscosity for alginate solutions near the gelation threshold induced by cupric ions. J Chem Phys 105:7746–7752. https://doi.org/10.1063/1.472557

Silva MA, da, Bierhalz ACK, Kieckbusch TG (2009) Alginate and pectin composite films crosslinked with Ca2+ ions: Effect of the plasticizer concentration. Carbohydr Polym 77:736–742. https://doi.org/10.1016/j.carbpol.2009.02.014

Braccini I, Pérez S (2001) Molecular basis of Ca2+-induced gelation in alginates and pectins: The egg-box model revisited. Biomacromolecules 2:1089–1096. https://doi.org/10.1021/bm010008g

Sirviö JA, Kolehmainen A, Liimatainen H et al. (2014) Biocomposite cellulose-alginate films: Promising packaging materials. Food Chem 151:343–351. https://doi.org/10.1016/j.foodchem.2013.11.037

Rezvanain M, Ahmad N, Mohd Amin MCI, Ng SF (2017) Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int J Biol Macromolecules 97:131–140. https://doi.org/10.1016/j.ijbiomac.2016.12.079

Xiao Q, Lim LT, Tong Q (2012) Properties of pullulan-based blend films as affected by alginate content and relative humidity. Carbohydr Polym 87:227–234. https://doi.org/10.1016/j.carbpol.2011.07.040

Müller CMO, Laurindo JB, Yamashita F (2009) Effect of cellulose fibers on the crystallinity and mechanical properties of starch-based films at different relative humidity values. Carbohydr Polym 77:293–299. https://doi.org/10.1016/j.carbpol.2008.12.030

Harding SE, Smith IH, Lawson CJ et al. (2011) Studies on macromolecular interactions in ternary mixtures of konjac glucomannan, xanthan gum and sodium alginate. Carbohydr Polym 83:329–338. https://doi.org/10.1016/j.carbpol.2010.06.035

Kumar M, Dosanjh HS, Singh H (2018) Removal of lead and copper metal ions in single and binary systems using biopolymer modified spinel ferrite. J Environ Chem Eng 6:6194–6206. https://doi.org/10.1016/j.jece.2018.09.054

Dewangan T, Tiwari A, Bajpai AK (2011) Removal of chromium(VI) ions by adsorption onto binary biopolymeric beads of sodium alginate and carboxymethyl cellulose. J Dispers Sci Technol 32:1075–1082. https://doi.org/10.1080/01932691003659403

Gopalakannan V, Viswanathan N (2016) One pot synthesis of metal ion anchored alginate-gelatin binary biocomposite for efficient Cr(VI) removal. Int J Biol Macromolecules 83:450–459. https://doi.org/10.1016/j.ijbiomac.2015.10.010

Kumar A, Rao KM, Han SS (2017) Development of sodium alginate-xanthan gum based nanocomposite scaffolds reinforced with cellulose nanocrystals and halloysite nanotubes. Polym Test 63:214–225. https://doi.org/10.1016/j.polymertesting.2017.08.030

Jiang S, Yu B, Zhou K et al. (2014) Sol-gel synthesis and enhanced properties of a novel transparent PMMA based organic-inorganic hybrid containing phosphorus, nitrogen and silicon. J Sol-Gel Sci Technol 69:418–428. https://doi.org/10.1007/s10971-013-3236-x

Zahedi M, Ray AK (2010) Optical absorption in solution processed thin films of calcia-alumina binary compounds. J Sol-Gel Sci Technol 55:317–321. https://doi.org/10.1007/s10971-010-2255-0

Shivayogimath A, Thomsen JD, Mackenzie DMA et al. (2019) A universal approach for the synthesis of two-dimensional binary compounds. Nat Commun 10:2957. https://doi.org/10.1038/s41467-019-11075-2