Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên cứu về việc sửa đổi LiNi0.5Mn1.5O4 bằng phương pháp hóa học siêu âm
Tóm tắt
Bài báo này mô tả ngắn gọn quá trình chế tạo LiNi0.5Mn1.5O4 bằng hóa học siêu âm và sự sửa đổi doping của nó. Tính chất vật lý và điện hóa của LiNi0.5Mn1.5O4 đã được nghiên cứu thông qua hiển vi điện tử quét (SEM) và các thử nghiệm điện hóa. Kết quả cho thấy rằng các hạt được doping với graphene có kích thước nhỏ hơn và phân bố đồng đều. Dung lượng tách xuất ban đầu ở 0.1C đạt 187 mAh g−1. Dung lượng tách xuất sau 30 chu kỳ đạt 181 mAh g−1, và tỷ lệ giữ lại dung lượng là 97%. Các mẫu được doping graphene có dung lượng cao, hiệu suất tốc độ xuất sắc, và độ ổn định chu kỳ đáng kể.
Từ khóa
#LiNi0.5Mn1.5O4 #hóa học siêu âm #doping #graphene #tính chất điện hóaTài liệu tham khảo
Zhang T, Yang Y, Lang K, Sun A (2011) Facile method to prepare hybrid iNi0.5Mn1.5O4/C with enhanced rate performance. J Alloys Compd 509:3783–3786
Shin D-W, Manthiram A (2011) Surface-segregated high-voltage spinel LiMn1.5Ni0.42Ga0.08O4 cathodes with superior high-temperature cyclability or lithium-ion batteries. Electrochem Commun 13:1213–1216
Zhu C, Akiyama T (2014) Designed synthesis of LiNi0.5Mn1.5O4 hollow microspheres with superior electrochemical properties as high-voltage cathode materials for lithium-ion batteries. RSC Adv 4:10151–10156
Manthiram A, Chemelewski K, Lee E-S (2014) A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ Sci 7:1339–1350
Ju S-H, Kang I-S, Lee Y-S, Shin W-K, Kim S, Shin K, Kim D-W (2014) Improvement of the cycling performance of LiNi0.6Co0.2Mn0.2O2 cathode active materials by a dual-conductive polymer coating. ACS Appl Mater Interfaces 6:2545–2551
Choi J, Kim J, Lee K-T (2016) Effect of Na2SO4 coating layer on nickel-rich LiNixCoyMnzO2 cathode materials for lithium-ion batteries. Adv Mater Interfaces 3:2354–2387
Wang D, Li X, Wang Z (2016) Co-modification of LiNi0.5Co0.2Mn0.3O2 cathode materials with zirconium substitution and surface polypyrrole coating: towards superior high voltage electrochemical performances for lithium ion batteries. Electrochim Acta 196:101–109
Wu H, Wang Z, Liu S (2015) Fabrication of Li+ conductive Li2ZrO3 -based shell encapsulated LiNi0.5Co0.2Mn0.3O2 microspheres as high-rate and long-life cathode materials for Li-ion batteries. Chem Electro Chem 12:1859–1859
Lu X, Li X, Wang Z, Guo H, Yan G, Yin X (2014) A modified co-precipitation process to coat LiNi1/3Co1/3Mn1/3O2 onto LiNi0.8Co0.1Mn0.1O2 for improving the electrochemical performance. Appl Surf Sci 297:182–187
Huang Z-J, Wang Z-X, Jing Q, Guo H-J (2016) Investigation on the effect of Na doping on structure and Li-ion kinetics of layered LiNi0.6Co0.2Mn0.2O2 cathode material. Electrochim Acta 192:120–124
Iim S-N, Seo J-Y, Jung D-S, Ahn W, Song H-S, Yeon S-H, Park S-B (2015) Rate capability for Na-doped Li1.167Ni0.18Mn0.548Co0.105O2 cathode material and characterization of Li-ion diffusion using galvanostatic intermittent titration technique. J Alloys Compd 623:55–58
Manikandan P, Periasamy P (2014) Novel mixed hydroxy-carbonate precursor assisted synthetic technique for LiNi1/3Mn1/3Co1/3O2 cathode materials. Mater Res Bull 50:132–137
Zhao R-R, Hung I-M, Li Y-T, Chen H-Y, Lin C-P (2012) Synthesis and properties of co-doped LiFePO4 as cathode material via a hydrothermal route for lithium-ion batteries. J Alloys Compd 513:282–286
Zhao Y-J, Xia M-H, Hu X-S, Zhao Z-K, Wang Y, Lv Z (2015) Effects of Sn doping on the structural and electrochemical properties of Li1.2Ni0.2Mn0.8O2 Li-rich cathode materials. Electrochim Acta 174:1167–1170
Zhao Y-J, Zhao C-S, Feng H-L (2011) Enhanced electrochemical performance of Li [Li0.2Ni0.2Mn0.6]O2 modified by manganese oxide coating for lithium-ion batteries. Electrochem Solid State Lett 14:1148–1151
Yamaki J-I, Baba Y, Katayama N, Takatsuji K, Egashira M, Okada S (2003) Thermal stability of electrolytes with LixCoO2 cathode or lithiated carbon anode. J Power Sources 221:789–793
Baba Y, Okada S, Yamaki J-I (2002) Thermal stability of LixCoO2 cathode for lithium-ion battery. Solid State Ionics 148:311–316
Foss C-E, Svensson A-M, Sunde S, Bruer F-V (2016) Edge/basal/defect ratios in graphite and their influence on the thermal stability of lithium ion batteries. J Power Sources 317:177–182
Wu P, Zeng X-L, Zhou C, Gu G-F, Tong D-G (2013) Improved electrochemical performance of LiNi0.5xRhxMn1.5O4 cathode materials for 5 V lithium ion batteries via Rh-doping. Mater Chem Phys 138:716–719
Liu W, Wang M, Gao X-L, Zhang W-D, Chen J-T, Zhou H-H, Zhang X-X (2012) Improvement of the high-temperature, high-voltage cycling performance of LiNi0.5Co0.2Mn0.3O2 cathode with TiO2 coating. J Alloys Compd 543:181–185
Ren Y, Armstrong A-R, Jiao F, Bruce P-G (2010) Influence of size on the rate of mesoporous electrodes for lithium batteries. J Am Chem Soc 132:996–1002
Deiss E (2005) Spurious chemical diffusion coefficients of Li in electrode materials evaluated with GITT. Electrochim Acta 50:2927–2931
Yu X-Y, Wang Y, Cai H, Shang C, Liu Y-C, Wang Q (2019) Enhancing the stability of high-voltage lithium-ion battery by using sulfur-containing electrolyte additives. Ionics. 21:1–11