Study on micro fabricated stainless steel surface to anti-biofouling using electrochemical fabrication
Tóm tắt
Biofilm formed on the surface of the object by the microorganism resulting in fouling organisms. This has led to many problems in daily life, medicine, health and industrial community. In this study, we tried to prevent biofilm formation on the stainless steel (SS304) sheet surface with micro fabricated structure. After then forming the microscale colloid patterns on the surface of stainless steel by using an electrochemical etching forming a pattern by using a FeCl3 etching was further increase the surface roughness. Culturing the Pseudomonas aeruginosa on the stainless steel fabricated with a micro structure on the surface was observed a relationship between the surface roughness and the biological fouling of the micro structure. As a result, the stainless steel surface with a micro structure was confirmed to be the biological fouling occurs less. We expect to be able to solve the problems caused by biological fouling in various fields such as medicine, engineering, using this research.
Tài liệu tham khảo
Li J, Fu J, Cong Y, Wu Y, Xue LJ, Han YC (2006) Macroporous fluoropolymeric film template by silica colloidal assembly: a possible route to super hydrophobic surfaces. Appl Surf Sci 252:2229–2234
Kim SY, Rhee JI (2008) A study on microorganisms antifouling and optical properties of the sensing membrane surface modified by hydrophobic sol–gels. J Korean Ind Eng. Chem 19(2):222–227
Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surface. Planta 202(1):1–8
Elena M, Kris S, Hywel M, Nikolaj G, Chris DWW, Mathis OR (2005) Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Lett 5(10):2097–2103
Ha Sw, Lee SM, Jeong ID, Jung PG, KO JS (2007) Surface wettability in terms of prominence and depression of diverse microstructures and their sizes. KSME(A) 31(6):679–685
Zorba V, Stratakis E, Barberoglou M, Spanakis E, Tzanetakis P, Fotakis C (2008) Biomimetic artificial surface that quantitatively reproduce the water repellency of the lotus leaf. Adv Mater 20:4049–4054
Bormashenko E, Bormashenko Y, Stein T, Whyman G, Bormashenko E (2007) Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie–Baxter wetting hypothesis and Cassie–Wenzel capillarity-induced wetting transition. J Colloid Interface Sci 31:212–216
Luo BH, Shum PW, Zhou ZF, Li KY (2010) Preparation of hydrophobic surface on steel by patterning using laser ablation process. Surf Coat Tech 204:1180–1185
Cho MS, Cha SH, Lim NG, Park HW, Cho MS, Cho SH, Cha NG, Lim HW, Park JK, Jo JS (2007) Characterization of SUS molds for light guide plates by electro chemical fabrication (ECF) method. Electron Mater Lett 3(2):93–96
Reiner F, Wilhelm B (2005) Wetting and self cleaning properties of artificial superhydrophobic surface. Langmuir 21:956–961
Mathilde C, Yong C, Frederic M, Anne P, David Q (2005) Microfabricated textured surfaces for super hydrophobicity investigations. Microeletron Eng 78–79:100–105