Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên Cứu Hành Vi Ăn Mòn của Hợp Kim CoCrNi Có Độ Entropy Trung Bình Trong Môi Trường Nước Biển Ven Bờ Đã Axit Hóa
Journal of Materials Engineering and Performance - Trang 1-15 - 2023
Tóm tắt
Bài báo này nhằm nghiên cứu hành vi ăn mòn của hợp kim CoCrNi có độ entropy trung bình (MEA) trong môi trường nước biển ven bờ đã axit hóa. Kết quả cho thấy dòng điện xoay chiều và ion HSO3− có tác động phá hủy khả năng bảo vệ của màng thụ động và làm yếu đi tính năng chống ăn mòn của MEA. Dòng điện xoay chiều gây hư hại cho màng thụ động bằng cách thúc đẩy ion HCO3− và HSO3− ion hóa một lượng lớn ion H+, đồng thời tăng cường sự hấp thụ của các ion ăn mòn (H+ và Cl−). Hơn nữa, hiệu ứng tương tác giữa dòng điện xoay chiều và HSO3− thúc đẩy đáng kể sự phát triển của ăn mòn phân tán không ổn định. Do ảnh hưởng của dòng điện xoay chiều, phản ứng cathode chuyển đổi từ sự đồng thời giữa sự giải phóng hydro và sự hấp thụ oxy sang chỉ giải phóng hydro, cho thấy rằng dòng điện xoay chiều là yếu tố quan trọng trong việc phá hủy tính chống ăn mòn của MEA.
Từ khóa
#Hợp kim CoCrNi #ăn mòn #nước biển #dòng điện xoay chiều #màng thụ động #ion HSO3−Tài liệu tham khảo
L.W. Wang, X.H. Wang, Z.Y. Cui, Z.Y. Liu, C.W. Du, and X.G. Li, Effect of Alternating Voltage on Corrosion of X80 and X100 Steels in a Chloride Containing Solution-Investigated by AC Voltammetry Technique, Corros. Sci., 2014, 86, p 213–222.
D.Z. Tang, Y.X. Du, M.X. Lu, Z.T. Jiang, L. Dong, and J.J. Wang, Effect of AC Current on Corrosion Behavior of Cathodically Protected Q235 Steel, Mater. Corros., 2015, 66, p 278–285.
N.W. Dai, J. Wu, L.C. Zhang, L.Q. Yin, and J. Li, Pitting and Etching Behaviors Occurring in Duplex Stainless Steel 2205 in the Presence of Alternating Voltage Interference, Constr. Build. Mater., 2019, 202, p 877–890.
H.T. He, J.X. Wang, Y. Cao, X.Y. Yang, G. Zhao, W.H. Yang, and J.X. Fang, Effect of Re and C on Mechanical Properties of NbTaW0.4 Refractory Medium-Entropy Alloy at Elevated Temperature, J. Alloys Compd., 2023, 931, p 167421.
X.L. An, C.L. Chu, L. Zhou, J. Ji, B.L. Shen, and K. Chu, Controlling the Corrosion Behavior of CoNiFe Medium Entropy Alloy by Grain Boundary Engineering, Mater. Charact., 2020, 164, p 110323.
Y. Qiao, F.H. Cao, Y. Chen, H.Y. Wang, and L.H. Dai, Impact Tension Behavior of Heavy-Drawn Nanocrystalline CoCrNi Medium Entropy Alloy Wire, Mater. Sci. Eng. A, 2022, 856, p 144041.
P.S. Xue, L.D. Zhu, P.H. Xu, H. Lu, S.H. Wang, Z.C. Yang, J.S. Ning, S.L. Sing, and Y. Ren, Microstructure Evolution and Enhanced Mechanical Properties of Additively Manufactured CrCoNi Medium-Entropy Alloy Composites, J. Alloys Compd., 2022, 928, p 167169.
Y. Liu, R.L. Lai, C.X. He, K. Li, Y. Yang, W.K. Wu, Z.Q. Fu, S.H. Xu, G.A. He, B. Gan, and C. Huang, Strengthening Mechanism of CrCoNi Medium-Entropy Alloy from the Partially Recrystallized Structure to the Fully Recrystallized Heterogeneous Structure, Mater. Charact., 2022, 186, p 111795.
S. Yoshida, T. Bhattacharjee, Y. Bai, and N. Tsuji, Friction Stress and Hall-Petch Relationship in CoCrNi Equi-Atomic Medium Entropy Alloy Processed by Severe Plastic Deformation and Subsequent Annealing, Scr. Mater., 2017, 134, p 33–36.
B. Gludovatz, A. Hohenwarter, K.V. Thurston, H. Bei, Z. Wu, E.P. George, and R.O. Ritchie, Exceptional Damage-Tolerance of a Medium-Entropy Alloy CrCoNi at Cryogenic Temperatures, Nat. Commun., 2016, 7, p 10602.
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George, Reasons for the Superior Mechanical Properties of Medium-entropy CrCoNi Compared to High-Entropy CrMnFeCoNi, Acta Mater., 2017, 128, p 292–303.
X.L. Wu, M.X. Yang, P. Jiang, C. Wang, L.L. Zhou, F.P. Yuan, and E. Ma, Deformation Nanotwins Suppress Shear Banding during Impact Test of CrCoNi Medium-Entropy Alloy, Scr. Mater., 2020, 178, p 452–456.
X.R. Li, H. Feng, J. Wang, X.F. Chen, P. Jiang, F.P. Yuan, H.B. Li, E. Ma, and X.L. Wu, Mechanical Property Comparisons between CrCoNi Medium-Entropy Alloy and 316 Stainless Steels, J. Mater. Sci. Technol., 2022, 108, p 256–269.
M. Liu, Finite Element Analysis of Pitting Corrosion on Mechanical Behavior of E690 Steel Panel, Anti-Corros. Method. M., 2022, 28, p 7527–7536.
M. Liu, Corrosion and Mechanical Behavior of Metal Materials, Materials, 2023, 16, p 16030973.
F. Xue, X. Wei, J.H. Dong, C.G. Wang, and W. Ke, Effect of Chloride Ion on Corrosion Behavior of Low Carbon Steel in 0.1M NaHCO3 Solution with Different Dissolved Oxygen Concentrations, J. Mater. Sci. Technol., 2019, 35, p 596–603.
Y.F. Lu, J.H. Dong, and W. Ke, Effects of Cl- Ions on the Corrosion Behaviour of Low Alloy Steel in Deaerated Bicarbonate Solutions, J. Mater. Sci. Technol., 2016, 32, p 341–348.
J.Y. Wang, W.H. Li, H.L. Yang, H. Huang, S.X. Ji, J.M. Ruan, and Z.L. Liu, Corrosion Behavior of CoCrNi Medium-Entropy Alloy Compared with 304 Stainless Steel in H2SO4 and NaOH Solutions, Corros. Sci., 2020, 177, p 108973.
I. Moravcik, S.N. Peighambardoust, A. Motallebzadeh, L.G. Moravcikova Gouvea, C. Liu, M.J. Prabhakar, I. Dlouhy, and Z.M. Li, Interstitial Nitrogen Enhances Corrosion Resistance of an Equiatomic CoCrNi Medium-Entropy Alloy in Sulfuric Acid Solution, Mater. Charact., 2020, 172, p 110869.
C.L. Zhang, M. Zhu, Y.F. Yuan, S.Y. Guo, and J.R. Wang, Study on the Microstructure and Corrosion Behavior of CoCrNi MEA Annealed at Different Temperatures in Na2CO3 /NaHCO3 solution, Mater. Corros., 2022, 73, p 1405–1419.
F. He, M. Zhu, Y.F. Yuan, S.Y. Guo, and G.T. Zhu, Study on AC Corrosion Behavior of CoCrNi Medium-Entropy Alloy in 3.5% NaCl Solution, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-07324-z
W. Annica, V.D.A. Marcus, D.M. Paul, R. Jörg, O. Ozlem, and W. Julia, The Comparison of the Corrosion Behavior of the CrCoNi Medium Entropy Alloy and CrMnFeCoNi High Entropy Alloy, Appl. Surf. Sci., 2022, 601, p 154171.
M. Zhu, F. He, Y.F. Yuan, S.Y. Guo, and G.Y. Wei, A Comparative Study on the Corrosion Behavior of CoCrNi Medium-Entropy Alloy and 316L Stainless Steel in Simulated Marine Environment, Intermetallics, 2021, 139, p 107370.
K. Gong, M. Wu, and G.X. Liu, Stress Corrosion Cracking Behavior of Rusted X100 Steel under the Combined Action of Cl− and HSO3− in a Wet-Dry Cycle Environment, Corros. Sci., 2020, 165, p 108382.
M. Zhu, C.L. Zhang, Y.F. Yuan, S.Y. Guo, and J. Pan, The Corrosion Behavior of CoCrNi Medium Entropy Alloy with Alternating Current Interference in Carbonate/Bicarbonate Solution, J. Mater. Eng. Perform., 2023, 32, p 1–17.
M. Zhu, C. Du, X. Li, Z. Liu, and D. Zhang, Effect of AC Current Density on Stress Corrosion Cracking Behavior of X80 Pipeline Steel in High pH Carbonate/Bicarbonate Solution, Electrochim. Acta, 2014, 117, p 351–359.
M. Zhu, C. Du, X. Li, Z. Liu, L. Hao, and D. Zhang, Effect of AC on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in Carbonate/Bicarbonate Solution, Corros. Sci., 2014, 87, p 224–232.
Z.J. Shi, Z.B. Wang, X.D. Wang, S. Zhang, and Y.G. Zheng, Effect of Thermally Induced B2 Phase on the Corrosion Behavior of an Al0.3CoCrFeNi High Entropy Alloy, J. Alloys Compd., 2022, 903, p 163886.
J.J. Shi, Y.Q. Zou, J. Ming, and M. Wu, Effect of DC Stray Current on Electrochemical Behavior of Low-Carbon Steel and 10%Cr Steel in Saturated Ca(OH)2 Solution, Corros. Sci., 2020, 169, p 108610.
H. Luo, Z. Li, A.M. Mingers, and D. Raabe, Corrosion Behavior of an Equiatomic CoCrFeMnNi High-Entropy Alloy Compared with 304 Stainless Steel in Sulfuric Acid Solution, Corros. Sci., 2018, 134, p 131–139.
J.Y. Li, X.K. Zhong, T.G. Wang, T. Shang, J.Y. Hu, Z. Zhang, D.Z. Zeng, D. Hou, and T.H. Shi, Synergistic Effect of Erosion and Hydrogen on Properties of Passive Film on 2205 Duplex Stainless Steel, J. Mater. Sci. Technol., 2021, 67, p 1–10.
X.Q. Fu, Y.C. Jia, X.Q. Cheng, C.F. Donga, Y. Fan, and X.G. Li, Effect of Grain Size and Its Uniformity on Corrosion Resistance of Rolled 316L Stainless Steel by EBSD and TEM, Mater. Today Commun., 2020, 25, p 101429.
X.Z. Wang, H. Luo, and J.L. Luo, Effects of Hydrogen and Stress on the Electrochemical and Passivation Behaviour of 304 Stainless Steel in Simulated PEMFC Environment, Electrochim. Acta, 2019, 293, p 60–77.
H. Feng, H.B. Li, X.L. Wu, Z.H. Jiang, S. Zhao, T. Zhang, D.K. Xu, S.C. Zhang, H.C. Zhu, B.B. Zhang, and M.X. Yang, Effect of Nitrogen on Corrosion Behaviour of a Novel High Nitrogenmedium-Entropy Alloy CrCoNiN Manufactured by Pressurized Metallurgy, J. Mater. Sci. Technol., 2018, 34, p 1781–1790.
M. Liu, Effect of Uniform Corrosion on Mechanical Behavior of E690 High-Strength Steel Lattice Corrugated Panel in Marine Environment: A Finite Element Analysis, Mater. Res. Express, 2021, 8, p 066510.
H. Luo, Q. Yu, C.F. Dong, G. Sha, Z.B. Liu, J.X. Liang, L. Wang, G. Han, and X.G. Li, Influence of the Aging Time on the Microstructure and Electrochemical Behaviour of a 15–5PH Ultra-High Strength Stainless Steel, Corros. Sci., 2018, 139, p 185–196.
D.D. Macdonald, The History of the Point Defect Model for the Passive State: A Brief Review of Film Growth Aspects, Electrochim. Acta, 2011, 56, p 1761–1772.
M. BenSalah, R. Sabot, E. Triki, L. Dhouibi, P. Refait, and M. Jeannin, Passivity of Sanicro28 (UNS N-08028) Stainless Steel in Polluted Phosphoric Acid at Different Temperatures Studied by Electrochemical Impedance Spectroscopy and Mott-Schottky Analysis, Corros. Sci., 2014, 86, p 61–70.
S. Ningshen, M.U. Kamachi, V.K. Mittal, and H.S. Khatak, Semiconducting and Passive Film Properties of Nitrogen-Containing Type 316LN Stainless Steels, Corros. Sci., 2007, 49, p 481–496.
D. Bai, F.D. Liu, H. Zhang, and J. Liu, Corrosion Behavior and Passivation Protection Mechanism on Different Zone of High-Nitrogen Steel Weld, Mater. Lett., 2021, 300, p 130194.
M. Hasegawa and M. Osawa, Anomalous Corrosion of Hydrogen-Containing Ferritic Steels in Aqueous Acid Solution, Corrosion, 1983, 39, p 115–120.
J.G. Yu, J.L. Luo, and P.R. Norton, Electrochemical Investigation of the Effects of Hydrogen on the Stability of the Passive Film on Iron, Electrochim. Acta, 2002, 47, p 1527–1536.
G. Sander, V. Cruz, N. Bhat, and N. Birbilis, On the In-Situ Characterisation of Metastable Pitting Using 316L Stainless Steel as a Case Study, Corros. Sci., 2020, 177, p 109004.
E. Shojaei, M.H. Moayed, M. Mirjalili, and S. Pahlavan, Proposed Stability Product Criterion for Open Hemispherical Metastable Pits Formed in the Crevices of Different Aspect Ratios (l/d) on 316L Stainless Steel in 3.5% NaCl Solution, Corros. Sci., 2021, 184, p 109389.
Y.Z. Shi, J.K. Mo, F.Y. Zhang, B. Yang, P.K. Liaw, and Y. Zhao, In-Situ Visualization of Corrosion Behavior of AlxCoCrFeNi Highentropy Alloys during Electrochemical Polarization, J. Alloys Compd., 2020, 844, p 156014.
W. Tian, N. Du, S. Li, S. Chen, and Q. Wu, Metastable Pitting Corrosion of 304 Stainless Steel in 3.5% Nacl Solution, Corros. Sci., 2014, 85, p 372–379.
J. Li, C.W. Du, Z.Y. Liu, X.G. Li, and M. Liu, Effect of Microstructure on the Corrosion Resistance of 2205 Duplex Stainless Steel. Part 1: Microstructure Evolution during Isothermal Aging at 850 °C and Evaluation of Anticorrosion Properties by Methods of Cyclic Potentiodynamic Polarization and Electrochemical Impedance Tests, Constr. Build. Mater., 2018, 189, p 1286–1293.
M. Zhu, B.Z. Zhao, Y.F. Yuan, S.Y. Guo, and G.Y. Wei, Study on Corrosion Behavior Andmechanism of CoCrFeMnNi HEA Interfered by AC Current in Simulated Alkaline Soil Environment, J. Electroanal. Chem., 2021, 882, p 115026.
Q.W. Wang, J.X. Zhang, Y. Gao, N.W. Dai, Y.X. Chen, D.Y. Lin, and X.J. Xia, Galvanic Effect and Alternating Current Corrosion of Steel in Acidic Red Soil, Metals, 2022, 12, p 12020296.