Study of ultrafine grains formed on the microsized catalyst surface induced growth of aligned SiO2 nanowires

Journal of Materials Science: Materials in Electronics - Tập 24 - Trang 3805-3811 - 2013
Guodong Wei1, Fengmei Gao1, Jinju Zheng1, Guangling Zhao2, Weiyou Yang1
1School of Materials, Ningbo University of Technology, Ningbo City, People’s Republic of China
2Department of Physics, Southern University and A&M College, Baton Rouge City, USA

Tóm tắt

In this study, beard-like and sea cucumber-like silica structures have been successfully synthesized on the Si substrate by a novel and simple water assisted method. The investigation of SEM and TEM reveals that the as-grown products possess many similar features like that they all have a very big, nearly spherical microsized body and uncountable, high density and highly oriented silica nanowire antennas. It is proved that ultrafine nanosized metal catalysts could be generated on the surface of one microsized catalyst during their growth process due to the indications of surface local softening and different elastic deformation along different crystal plane taking place on the catalyst surface during growth process. Our results could introduce a new way to control the growth of high-density and well-oriented functional nanowire arrays with desired morphologies.

Tài liệu tham khảo

J. Goldberger, A.I. Hochbaum, R. Fan, P. Yang, Nano Lett. 6, 973–977 (2006) S.E. Thompson, S. Parthasarathy, Mater Today 9, 20–25 (2006) Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.H. Kim, C.M. Lieber, Science 294, 1313–1317 (2001) A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Science 294, 1317–1320 (2001) G.Y. Tseng, J.C. Ellenbogen, Science 294, 1293–1294 (2001) M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Nature 415, 617–620 (2002) W. Lu, C.M. Lieber, Nature Mater. 6, 841–850 (2007) N. Ghoniem, D. Walgraef, S. Zinkle, J. Comput. Aid. Mater. 8, 1–38 (2001) F. Xu, Y. Lu, Y. Xie, Y. Liu, Mater. Des. 30, 1704–1711 (2009) C. Sun, C.H.O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.S. Peh, V. Stojanovic, 2012 Sixth IEEE/ACM International Symposium on Networks on chip (NoCS) (2012), pp. 201–210, May 2012 R. Horn, P. Abolghasem, B.J. Bijlani, D. Kang, A. Helmy, G. Weihs, Phys. Rev. Lett. 108, 153605–153609 (2012) B.P. Timko, T. Cohen-Karni, Q. Qing, B. Tian, M. Lieber, IEEE Trans. Nanotechnol. 9, 269–280 (2010) R. Wagner, W. Ellis, Appl. Phys. Lett. 4, 89–90 (1964) L. Zhou, H. Huang, Appl. Phys. Lett. 84, 1940–1942 (2004) E. López-Camacho, M. Fernández, C. Gómez-Aleixandre, Nanotechnology 19, 305602–305606 (2008) V. Purushothaman, V. Ramakrishnan, K. Jeganathan, RSC Adv. 2, 4802–4806 (2012) N.S. Ramgir, K. Subannajui, Y. Yang, R. Grimm, R. Michiels, M. Zacharias, J. Phys. Chem. C 114, 10323–10329 (2010) Y. Wu, P. Yang, J. Am. Chem. Soc. 123, 3165–3166 (2001) J. Liu, S. Fan, H. Dai, MRS Bull. 29, 244–250 (2004) Y. Li, R. Cui, L. Ding, Y. Liu, W. Zhou, Y. Zhang, Z. Jin, F. Peng, J. Liu, Adv. Mater. 22, 1508–1515 (2010) X.S. Fang, C.H. Ye, L.D. Zhang, J.X. Zhang, J.W. Zhao, P. Yan, Small 1, 422–428 (2005) J. Hu, Y. Jiang, X. Meng, C.S. Lee, S.T. Le, Small 1, 429–438 (2005) P. Wu, X. Zou, L. Chi, Q. Li, T. Xiao, Growth model of lantern-like amorphous silicon oxide nanowires. Nanotechnology 18, 125601–125606 (2007) Z.W. Pan, Z.R. Dai, C. Ma, Z.L. Wang, J. Am. Chem. Soc. 124, 1817–1822 (2002) Z.W. Pan, S. Dai, D.B. Beach, D.H. Lowndes, Appl. Phys. Lett. 83, 3159–3161 (2003)