Study of the surface oxides and corrosion behaviour of an equiatomic CoCrFeMnNi high entropy alloy by XPS and ToF-SIMS

Corrosion Science - Tập 167 - Trang 108507 - 2020
Luntao Wang1, Dimitri Mercier1, Sandrine Zanna1, Antoine Seyeux1, Mathilde Laurent‐Brocq2, Loïc Perrière2, Ivan Guillot2, Philippe Marcus1
1IRCP - Institut de Recherche de Chimie Paris (Chimie ParisTech - PSL, 11 rue Pierre et Marie Curie, 75005 Paris - France)
2ICMPE - Institut de Chimie et des Matériaux Paris-Est (2-8, rue Henri Dunant 94320 Thiais - France)

Tóm tắt

Từ khóa


Tài liệu tham khảo

Miracle, 2017, A critical review of high entropy alloys and related concepts, Acta Mater., 122, 448, 10.1016/j.actamat.2016.08.081

Zhang, 2014, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61, 1, 10.1016/j.pmatsci.2013.10.001

Senkov, 2015, Accelerated exploration of multi-principal element alloys with solid solution phases, Nat. Commun., 6, 6529, 10.1038/ncomms7529

Zhang, 2019

Nagase, 2015, In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM), Intermetallics, 59, 32, 10.1016/j.intermet.2014.12.007

Bracq, 2017, The fcc solid solution stability in the Co-Cr-Fe-Mn-Ni multi-component system, Acta Mater., 128, 327, 10.1016/j.actamat.2017.02.017

Wu, 2014, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics, 46, 131, 10.1016/j.intermet.2013.10.024

Bracq, 2019, Combining experiments and modeling to explore the solid solution strengthening of high and medium entropy alloys, Acta Mater., 177, 266, 10.1016/j.actamat.2019.06.050

Feuerbacher, 2018, A single-phase bcc high-entropy alloy in the refractory Zr-Nb-Ti-V-Hf system, Scr. Mater., 152, 40, 10.1016/j.scriptamat.2018.04.009

Couzinié, 2014, Microstructure of a near-equimolar refractory high-entropy alloy, Mater. Lett., 126, 285, 10.1016/j.matlet.2014.04.062

Lilensten, 2018, Study of a bcc multi-principal element alloy: tensile and simple shear properties and underlying deformation mechanisms, Acta Mater., 142, 131, 10.1016/j.actamat.2017.09.062

Senkov, 2011, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19, 698, 10.1016/j.intermet.2011.01.004

Cantor, 2004, Microstructural development in equiatomic multicomponent alloys, Mater. Scie. Eng.: A, 375–377, 213, 10.1016/j.msea.2003.10.257

Gludovatz, 2014, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345, 1153, 10.1126/science.1254581

Schuh, 2015, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Mater., 96, 258, 10.1016/j.actamat.2015.06.025

Zhao, 2017, Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement, Scr. Mater., 135, 54, 10.1016/j.scriptamat.2017.03.029

Shi, 2017, Corrosion-resistant high-entropy alloys: a review, Metals, 7, 43, 10.3390/met7020043

Qiu, 2017, Corrosion of high entropy alloys, NPJ Mater. Degrad., 1, 15, 10.1038/s41529-017-0009-y

Tang, 2014, Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys, Entropy, 16, 895, 10.3390/e16020895

Tsai, 2014, High-entropy alloys: a critical review, Mater. Res. Lett., 2, 107, 10.1080/21663831.2014.912690

Gardin, 2018, Comparative study of the surface oxide films on lean duplex and corresponding single phase stainless steels by XPS and ToF-SIMS, Corros. Sci., 143, 403, 10.1016/j.corsci.2018.08.009

Maurice, 2015, Effects of molybdenum on the composition and nanoscale morphology of passivated austenitic stainless steel surfaces, Faraday Discuss., 180, 151, 10.1039/C4FD00231H

Maurice, 2018, Progress in corrosion science at atomic and nanometric scales, Prog. Mater. Sci., 95, 132, 10.1016/j.pmatsci.2018.03.001

Maurice, 1996, XPS and STM study of passive films formed on Fe‐22Cr (110) single‐crystal surfaces, J. Electrochem. Soc., 143, 1182, 10.1149/1.1836616

Dou, 2019, Characterization of the passive properties of 254SMO stainless steel in simulated desulfurized flue gas condensates by electrochemical analysis, XPS and ToF-SIMS, Corros. Sci.

Fajardo, 2019, Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution, Corros. Sci., 154, 246, 10.1016/j.corsci.2019.04.026

Peissl, 2006, Influence of chromium, molybdenum and cobalt on the corrosion behaviour of high carbon steels in dependence of heat treatment, Mater. Corros., 57, 759, 10.1002/maco.200503969

Lee, 2008, Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments, Corros. Sci., 50, 2053, 10.1016/j.corsci.2008.04.011

Kao, 2010, Electrochemical passive properties of AlxCoCrFeNi (x= 0, 0.25, 0.50, 1.00) alloys in sulfuric acids, Corros. Sci., 52, 1026, 10.1016/j.corsci.2009.11.028

Lin, 2011, Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy, Intermetallics, 19, 288, 10.1016/j.intermet.2010.10.008

Hsu, 2005, Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution, Mater. Chem. Phys., 92, 112, 10.1016/j.matchemphys.2005.01.001

Shang, 2019, Effect of Mo addition on corrosion behavior of high-entropy alloys CoCrFeNiMo x in aqueous environments, Acta Metall. Sin. Engl., 32, 41, 10.1007/s40195-018-0812-7

Quiambao, 2019, Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions, Acta Mater., 164, 362, 10.1016/j.actamat.2018.10.026

Rodriguez, 2017, Corrosion behavior of CoCrFeMnNi high-entropy alloys (HEAs) under aqueous acidic conditions, ECS Trans., 77, 741, 10.1149/07711.0741ecst

Laplanche, 2016, Oxidation behavior of the CrMnFeCoNi high-entropy alloy, Oxid. Met., 85, 629, 10.1007/s11085-016-9616-1

Laurent-Brocq, 2015, Insights into the phase diagram of the CrMnFeCoNi high entropy alloy, Acta Mater., 88, 355, 10.1016/j.actamat.2015.01.068

Di Franco, 2017, Effect of high temperature oxidation process on corrosion resistance of bright annealed ferritic stainless steel, J. Electochem. Soc., 164, C869, 10.1149/2.1851713jes

Maurice, 1998, X‐Ray photoelectron spectroscopy and scanning tunneling microscopy study of passive films formed on (100) Fe‐18Cr‐13Ni single‐crystal surfaces, J. Electochem. Soc., 145, 909, 10.1149/1.1838366

Machet, 2002, XPS study of oxides formed on nickel‐base alloys in high‐temperature and high‐pressure water, Surf. Interface Anal., 34, 197, 10.1002/sia.1282

Marcus, 1992, XPS study of the passive films formed on nitrogen-implanted austenitic stainless steels, Appl. Surf. Sci., 59, 7, 10.1016/0169-4332(92)90163-R

Biesinger, 2011, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci., 257, 2717, 10.1016/j.apsusc.2010.10.051

Aronniemi, 2005, Chemical state quantification of iron and chromium oxides using XPS: the effect of the background subtraction method, Surf. Sci., 578, 108, 10.1016/j.susc.2005.01.019

Yamashita, 2008, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci., 254, 2441, 10.1016/j.apsusc.2007.09.063

Payne, 2011, X-ray photoelectron spectroscopy studies of reactions on chromium metal and chromium oxide surfaces, J. Electron Spectrosc. Relat. Phenom., 184, 29, 10.1016/j.elspec.2010.12.001

Salvi, 1995, Peak fitting of the chromium 2p XPS spectrum, Appl. Surf. Sci., 90, 333, 10.1016/0169-4332(95)00168-9

Ünveren, 2004, Analysis of highly resolved x‐ray photoelectron Cr 2p spectra obtained with a Cr2O3 powder sample prepared with adhesive tape, Surf. Interface Anal., 36, 92, 10.1002/sia.1655

Doniach, 1970, Many-electron singularity in X-ray photoemission and X-ray line spectra from metals, J. Phys. C: Solid State Phys., 3, 285, 10.1088/0022-3719/3/2/010

Gadzuk, 1975, Excitation energy dependence of core-level x-ray-photoemission-spectra line shapes in metals, Phys. Rev. B, 12, 524, 10.1103/PhysRevB.12.524

Stepanov, 2015, Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys, J. Alloys Compd., 628, 170, 10.1016/j.jallcom.2014.12.157

He, 2014, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Mater., 62, 105, 10.1016/j.actamat.2013.09.037

Scofield, 1976, Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV, J. Electron Spectrosc. Relat. Phenom., 8, 129, 10.1016/0368-2048(76)80015-1

Tanuma, 1991, Calculations of electorn inelastic mean free paths. II. Data for 27 elements over the 50–2000 eV range, Surf. Interface Anal., 17, 911, 10.1002/sia.740171304

Wang, 2019, Thermal stability of the passive film formed on 316L stainless steel surface studied by ToF-SIMS, Corros. Sci.

Barin, 1989

Evans, 1976, Chromium-depleted zones and the oxidation process in stainless steels, Oxid. Met., 10, 149, 10.1007/BF00612157

Leygraf, 1976, Initial oxidation stages on Fe-Cr(100) and Fe-Cr(110) surfaces, Surf. Sci., 61, 69, 10.1016/0039-6028(76)90408-8

Luo, 2018, Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution, Corros. Sci., 134, 131, 10.1016/j.corsci.2018.02.031

Wang, 2019, Passivation-induced physicochemical alterations of the native surface oxide film on 316L austenitic stainless steel, J. Electochem. Soc., 166, C3376, 10.1149/2.0321911jes