Study of the structure and mechanical properties of nano- and ultradispersed mechanically activated heavy tungsten alloys

Pleiades Publishing Ltd - Tập 8 - Trang 108-121 - 2013
V. N. Chuvil’deev1, A. V. Nokhrin1, G. V. Baranov2, A. V. Moskvicheva1, M. S. Boldin1, D. N. Kotkov1, N. V. Sakharov1, Yu. V. Blagoveshchenskii3, S. V. Shotin1, N. V. Melekhin1, V. Yu. Belov2
1Scientific-Research Physical-Technical Institute, Lobachevsky State University, Nizhni Novgorod, Nizhni Novgorod, Russia
2Russian Federal Nuclear Center, Institute of Experimental Physics, Sarov, Nizhni Novgorod oblast, Russia
3Baikov Institute of Metallurgy and Material Sciences, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Mechanisms of sintering and the structure and mechanical properties of nano- and ultradispersed W-Ni-Fe (WNF) and W-Ni-Fe-Co (WNFC) heavy tungsten alloys are investigated. The effect of tungsten particle sizes on the optimal sintering temperature is studied. The size of particles has been changed by the mechanical activation (MA) of the source W-Ni-Fe coarse-grained (CG) charge and by adding ultradispersed particles obtained using plasmochemical synthesis. Nanodispersed powders and ultradispersed powders (UDPs) have been sintered using the techniques of free sintering and pulse plasma sintering (PPS). It has been revealed that the dependence of the alloy density on heating temperature is nonmonotonic, with the maximum corresponding to the optimum sintering temperature. It has been shown that an increase in the time of MA and acceleration of grinding bodies in the process of MA accompanied by a decrease in the size of alloy particles and formation of nonequilibrium solid solutions lead to a reduction in the optimal sintering temperature. It has been shown that, using planetary high-energy milling methods and high-rate spark plasma sintering, it is possible to obtain ultrastrong tungsten alloys whose mechanical properties (macroelasticity stress and yield stress) substantially exceed analogous properties of commercial alloys.

Tài liệu tham khảo

E. M. Savitskii, K. B. Povarova, and P. V. Makarov, Metal Science for Tungsten (Metallurgiya, Moscow, 1978) [in Russian]. G. A. Tikhii, “Structure, Properties and Producing Technology of Heat-Proof Tungsten Pseudoalloys W-Ni-Fe and Mo-Cu by Using Mechanoactivated Charging Material,” Extended Abstract of Candidate’s Dissertation in Engineering (Samarskii Gos. Tekhn. Univ., Samara, 2008). E. C. Green, D. J. Jones, and W. R. Pitkin, “Developments in High-Density Alloys,” in Proc. Symp. on Powder Metallurgy (1954). R. Krock and H. Shepard, “Mechanical Behaviour of the Two-Phase Composite Tungsten-Nickel-Iron,” Trans. Metallurg. Soc. AIME 227(5), 1127–1134 (1963). Ya. E. Geguzin, Physics of Sintering (Nauka, Moscow, 1967) [in Russian]. K. B. Povarova, M. I. Alymov, and A. A. Drozdov, “Heavy Nanopowder Tungsten Alloys,” Vopr. Materialoved. 54(2), 94–99 (2008). K. B. Povarova, M. I. Alymov, O. S. Gavrilin, A. A. Drozdov, E. V. Evstratov, A. I. Kachnov, and A. E. Sal’ko, “Effect of Sintering Conditions of W-Ni-Fe-Co Heavy Alloy Nanopowders onto Structure and Density of Compact Samples,” Metally, No. 6, 65–72 (2007). K. B. Povarova, M. I. Alymov, O. S. Gavrilin, A. A. Drozdov, A. I. Kachnov, N. L. Korenovskii, and I. O. Bannykh, “Structure and Properties of Compact Samples of Nanopowder Prepared W-Ni-Fe-Co Heavy Alloys,” Metally, No. 1, 65–69 (2008). S. N. Alam, “Synthesis and Characterization of W-Cu Nanocomposites Developed by Mechanical Alloying,” Mater. Sci. Eng. A 433(1–2), 161–168 (2006). I. S. Humail, X. Qu, Ch. Jia, M. Qin, and X. He, “Morphology and Microstructure Characterization of 95W-3.5Ni-1.5Fe Powder Prepared by Mechanical Alloying,” J. Beijing Univ. Sci. Technol. 13, 442–445 (2006). V. N. Chuvil’deev, I. S. Deich, and O. E. Pirozhnikova, “Metals Microplasticity Examined by Means of Relaxation Tests,” in Solid State Physics. Laboratory Practical Works (Nizhegorodskii Gos. Univ. im. N.I. Lobachevskogo, Nizhni Novgorod, 2000), Part 1, pp. 21–66 [in Russian]. H. J. Ryu and S. H. Hong, “Effects of Sintering Conditions on Mechanical Properties of Mechanically Alloyed Tungsten Heavy Alloys,” Metals Mater. Int. 7(3), 221–226 (2001). Yu. N. Stepanov, M. I. Alymov, and E. I. Malygina, “Ultrafine Metal Powders: the Model of the First Step of Sintering,” Metally, No. 1, 127–132 (1995). Yu. N. Stepanov and M. I. Alymov, “Nanoparticles Shape Effect onto Powder Sintering Temperature,” Metally, No. 6, 22–24 (2006). M. I. Alymov, Powder Metallurgy for Nanocrystalline Materials (Nauka, Moscow, 2007) [in Russian]. V. A. Ivensen, Sintering Phenomenology and Several Theoretical Problems (Metallurgiya, Moscow, 1985) [in Russian]. G. A. Libenson, V. Yu. Lopatin, and G. V. Komarnitskii, Processes of Powder Metallurgy, Vol. 2: Formation and Sintering (MISIS, Moscow, 2002) [in Russian]. Z. A. Munir and U. Anselmi-Tamburni, “The Effect of Electric Field and Pressure on the Synthesis and Consolidation of Materials: A Review of the Spark Plasma Sintering Method,” J. Mater. Sci. 21(3), 763–777 (2006). K. Lee, S. I. Cha, H. J. Ryu, and S. H. Hong, “Effect of Oxide Dispersoids Addition on Mechanical Properties of Tungsten Heavy Alloy Fabricated by Mechanical Alloying Processes,” Mater. Sci. Eng. A 452–453, 55–60 (2007). I. S. Humail, F. Akhtra, S. J. Askari, M. Tufail, X. Qu, “Tensile Behavior Change Depending on the Varying Tungsten Content of W-Ni-Fe Alloys,” Int. J. Refractory Metals Hard Mater. 25, 380–385 (2007). L. S. Vasil’ev, I. L. Lomaev, and E. P. Elsukov, “Mechanisms of Phases Deformation Dissolving in Metals,” Fiz. Met. Metalloved. 102(2), 201–213 (2006). L. S. Vasil’ev and S. F. Lomaeva, “Metallic Powders Oversaturation by Intersitial Impurities under Mechanoactivating Conditions,” Metally, No. 4, 48–54 (2003). L. S. Vasil’ev and S. F. Lomaeva, “Kinetics of Phases Solubility Caused by Nanostructure Metals and Alloys Deformation,” Fiz. Met. Metalloved. 107(2), 152–157 (2009). Physical Quantities. Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian]. H. J. Frost and M. F. Ashby, Deformation Mechanism Maps (Pergamon Press, London, 1982; Metallurgiya, Chelyabinsk, 1989). State Diagrams for Bimetallic Systems. Handbook, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1999), Vol. 3, Book 1 [in Russian]. K. B. Povarova, P. V. Makarov, A. D. Ratner, E. K. Zavarzina, and K. V. Volkov, “Heavy Alloys of W-N-Fe-90 Type. I. Effect of Doping and Conditions of Tungsten Powders Formation onto Structure, Microstructure and Properties of Sintered Alloys,” Metally, No. 4, 39–48 (2002).