Study of the repeated collapsibility of undisturbed loess in Guyuan, China

Springer Science and Business Media LLC - Tập 80 Số 8 - Trang 6321-6330 - 2021
Haiman Wang1, Wankui Ni1, Haisong Liu1, Miansong Huang2, Kangze Yuan1, Lan Li3, Xiangning Li3
1College of Geological Engineering and Geomatics, Chang’an University, Xi’an, Shaanxi, 710054, People’s Republic of China
2Ningxia Capital Sponge City Construction & Development CO, LTD2, Guyuan, Ningxia, 756000, People’s Republic of China
3Key Lab of Western Geological Resources and Geoengineering Under Ministry of Education, Chang’an University, Xi’an, Shaanxi, 710054, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

ASTM International (2003) ASTM D5333–03. Standard test method for measurement of collapse potential of soils. ASTM International, West Conshohocken, PA

Casagrande A (1936) The determination of pre-consolidation load and its practical significance. Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering 3:93–108

Chen X, Luo YS, Cheng DW, Guo H (2011) Experimental study of loess structural strength and resistance coefficient. Appl Mech Mater 90:98–107. https://doi.org/10.4028/www.scientific.net/AMM.90-93.98

CNS, Mowr (2019) GB/T50123-2019. Standard for geotechnical testing method. China Planning Press, Beijing in Chinese

Delage P, Audiguier M, Cui Y, Howat MD (1996) Microstructure of a compacted silt. Can Geotech J 33(1):150–158. https://doi.org/10.1139/t96-030

Dijkstra TA (2001) Geotechnical thresholds in the Lanzhou loess of China. Quatern Int 76–77(1):21–28. https://doi.org/10.1016/S1040-6182(00)00086-0

Gao G (1988) Formation and development of the structure of collapsing loess in China. Eng Geol 25(2–4):235–245. https://doi.org/10.1016/0013-7952(88)90029-4

Haeri SM, Garakani AA, Khosravi A, Meehan CL (2013) Assessing the hydro-mechanical behavior of collapsible soils using a modified triaxial test device. Geotech Test J 37. https://doi.org/10.13140/2.1.4288.1608

Hao Q, Guo Z, Qiao Y, Xu B, Oldfield F (2010) Geochemical evidence for the provenance of middle Pleistocene loess deposits in southern China. Quat Sci Rev 29:3317–3326. https://doi.org/10.1016/j.quascirev.2010.08.004

Jiang M, Zhang F, Hu H, Cui Y, Peng J (2014) Structural characterization of natural loess and remolded loess under triaxial tests. Eng Geol 181:249–260. https://doi.org/10.1016/j.enggeo.2014.07.021

Kim D, Kang S (2013) Engineering properties of compacted loesses as construction materials. KSCE J Civ Eng 17(2):335–341. https://doi.org/10.1007/s12205-013-0872-1

Li Y (2018) A review of shear and tensile strengths of the Malan Loess in China. Eng Geol 236:4–10. https://doi.org/10.1016/j.enggeo.2017.02.023

Liang C, Cao C, Wu S (2018) Hydraulic-mechanical properties of loess and its behavior when subjected to infiltration-induced wetting. Bull Eng Geol Environ 77:385–397. https://doi.org/10.1007/s10064-016-0943-x

Liu Y, Cao GZ, Meng YG, Liu MX (2013) Study on the microstructure feature and strength mechanism of the Tien Lake Peat Soil. Adv Mater Res 864:2695–2702. https://doi.org/10.4028/www.scientific.net/AMR.864-867.2695

Lutenegger AJ (1981) Stability of loess in light of the inactive particle theory. Nature 291:360. https://doi.org/10.1038/291360a0

Lv Q, Wang S, Wang D, Wu Z (2014) Water stability mechanism of silicification grouted loess. Bull Eng Geol Environ 73(4):1025–1035. https://doi.org/10.1007/s10064-014-0646-0

Mei Y, Li Y, Wang X, Wang J, Hu C (2019) Statistical analysis of deformation laws of deep foundation pits in collapsible loess. Arab J Sci Eng 44(10):8347–8360. https://doi.org/10.1007/s13369-019-03931-6

Mihalache C, Buscarnera G (2015) Is wetting collapse an unstable compaction process? J Geotech Geoenviron Eng 141(2):420–432. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001226

Rogers CDF, Dijkstra TA, Smalley IJ (1994) Hydroconsolidation and subsidence of loess: studies from China, Russia, North America and Europe: In memory of Jan Sajgalik. Eng Geol 37(2):83–113. https://doi.org/10.1016/0013-7952(94)90045-0

Romero E, Simms PH (2008) Microstructure investigation in unsaturated soils: a review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy. Geotech Geol Eng 26(6):705–727. https://doi.org/10.1007/s10706-008-9204-5

Shao X, Zhang H, Tan Y (2018) Collapse behavior and microstructural alteration of remolded loess under graded wetting tests. Eng Geol 233:11–22. https://doi.org/10.1016/j.enggeo.2017.11.025

Sun JZ, Liu JM (2000) On unsaturated collapse, remnant collapse and multiple collapse of the loess. Chin J Geotech Eng 22(03):365–367 (In Chinese)

Wang L, Lu ZG, Shao S (2017) A composite power exponential nonlinear model of rock and soil. Chin J Rock Mechan Eng 36(05):1269–1278

Wang L, Shao S, She F (2019) A new method for evaluating loess collapsibility and its application. Eng Geol 264:105376. https://doi.org/10.1016/j.enggeo.2019.105376

Xie WL, Li P, Zhang MS, Cheng TE, Wang Y (2018) Collapse behavior and microstructural evolution of loess soils from the Loess Plateau of China. J Mt Sci-Engl 15(8):1642–1657. https://doi.org/10.1007/s11629-018-5006-2

Xie X, Qi S, Zhao F, Wang D (2017) Creep behavior and the microstructural evolution of loess-like soil from Xi’an area, China. Eng Geol 236:43–59. https://doi.org/10.1016/j.enggeo.2017.11.003

Yates K, Fenton CH, Bell DH (2017) A review of the geotechnical characteristics of loess and loess-derived soils from Canterbury, South Island, New Zealand. Eng Geol 236:11–22. https://doi.org/10.1016/j.enggeo.2017.08.001

Yuan ZX, Wang LM (2009) Collapsibility and seismic settlement of loess. Eng Geol 105:119–123. https://doi.org/10.1016/j.enggeo.2008.12.002