Study of the isothermal bainitic transformation and austenite stability in an advanced Al-rich medium-Mn steel

Archives of Civil and Mechanical Engineering - Tập 22 - Trang 1-14 - 2022
M. Morawiec1, V. Ruiz-Jimenez2, C. Garcia-Mateo2, J. A. Jimenez2, A. Grajcar3
1Faculty of Mechanical Engineering, Materials Research Laboratory, Silesian University of Technology, Gliwice, Poland
2National Center for Metallurgical Research, Madrid, Spain
3Faculty of Mechanical Engineering, Department of Engineering Materials and Biomaterials, Silesian University of Technology, Gliwice, Poland

Tóm tắt

Isothermal bainitic transformation of a lean medium-Mn steel containing (in mass%) 0.18C–3.6Mn–1.7Al–0.23Si–0.2Mo–0.04–Nb after full austenitization at 1100 ºC was studied by means of high resolution dilatometry. The effects of isothermal holding temperatures ranging from 450 to 350 °C on the bainitic transformation kinetics was studied experimentally characterizing the microstructure present after a holding time ranging from 15 min to 2 h. The obtained results showed that the bainitic transformation is uncompleted at temperatures above 425 °C. The carbon enrichment of the austenite during isothermal treatment at 450 °C and 425 °C is not enough to avoid martensitic transformation of the austenite during cooling to room temperature. Thus, it is obtained a mixed structure including bainitic ferrite and martensite. Decreasing the austempering temperature resulted in a more pronounced bainite formation. The kinetics of the transformation during austempering at 350ºC is quite similar to that observed at 400 °C, so that 60 min are needed in both cases to complete the reaction. However, local variations in chemical composition associated to segregation of Mn and Al during casting solidification results in differences in the transformation rate of bainitic reaction between different areas in the material. A balance difference between the dendritic and interdendritic areas is responsible for the differences observed among test samples in the kinetics of the isothermal bainitic transformation and the final microstructure.

Tài liệu tham khảo

Kwok TWJ, Rahman KM, Xu X, Bantounas I, Kelleher J, Dasari S, Alam T, Banerjee R, David D. Design of a high strength, high ductility 12 wt% Mn medium manganese steel with hierarchical deformation behavior. Mater Sci Eng A. 2020;782:1–10. https://doi.org/10.1016/j.msea.2020.139258. Yu S, Du LX, Hu J, Misra RDK. Effect of hot rolling temperature on the microstructure and mechanical properties of ultra-low carbon medium manganese steel. Mater Sci Eng A. 2018;731:149–55. https://doi.org/10.1016/j.msea.2018.06.020. Chanden AK, Bansal GK, Kundu J, Chakraborty J, Ghosh-Chowdhury S. Effect of prior austenite grain size on the evolution of microstructure and mechanical properties of an intercritically annealed medium manganese steel. Mater Sci Eng A. 2019;768:1–10. https://doi.org/10.1016/j.msea.2019.138458. Jabłońska MB, Kowalczyk K. Microstructural aspects of energy absorption of high manganese steels. Proc Manuf. 2019;27:91–7. https://doi.org/10.1016/j.promfg.2018.12.049. Lee YK, Han J. Current opinion in medium manganese steel. Mater Sci Technol. 2014;31:843–56. https://doi.org/10.1179/1743284714Y.0000000722. Ding W, Wang R, Li Y, Wang B. High elongation of medium-manganese steel containing 1.0 wt.% Al after a short intercritical annealing time. J Mater Res Technol. 2020;9:7262–72. https://doi.org/10.1016/j.jmrt.2020.04.091. Yan S, Li T, Liang T, Liu X. Adjusting the microstructure evolution, mechanical properties and deformation behaviors of Fe-5.95Mn-1.55Si-1.03Al-0.055C medium Mn steel by cold-rolling reduction ratio. J Mater Res Technol. 2020;9:1314–24. https://doi.org/10.1016/j.jmrt.2019.11.058. Bai Y, Matsui Y, Shibata A, Tsuji N. Effect of thermomechanical processing at α+γ two-phase temperatures on microstructure and mechanical property of 5Mn-0.1C-2Si medium-manganese steel. Mater Sci Eng A. 2019;743:57–66. https://doi.org/10.1016/j.msea.2018.11.061. Haupt M, Dutta A, Ponge D, Sandlobes S, Nellessen M, Hirt G. Influence of intercritcal annealing on microstructure and mechanical properties of a medium manganese steel. Proc Eng. 2017;207:1803–8. https://doi.org/10.1016/j.proeng.2017.10.942. Zhu J, Ding R, He J, Yang ZG, Zhang C, Chen H. A cyclic austenite reversion treatment for stabilizing austenite in the medium manganese steels. Scr Mater. 2017;136:6–10. https://doi.org/10.1016/j.scriptamat.2017.03.038. Xu YB, Hu ZP, Zou Y, Tan DT, Han DT, Chen SQ, Ma DG, Misra RDK. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite. Mater Sci Eng A. 2017;688:40–55. https://doi.org/10.1016/j.msea.2017.01.063. Zhou WH, Wang XL, Venkatasurya PC, Guo H, Shang CJ, Misra RDK. Structure-mechanical property relationship in a high strength low carbon alloy steel processed by two-step intercritical annealing and intercritical tempering. Mater Sci Eng A. 2014;607:569–77. https://doi.org/10.1016/j.msea.2014.03.107. Nakada N, Mizutani K, Tsuchiyama T, Takaki S. Difference in transformation behavior between ferrite and austenite formations in medium manganese steel. Acta Mater. 2014;65:251–8. https://doi.org/10.1016/j.actamat.2013.10.067. Morawiec M, Grajcar A, Zalecki W, Garcia-Mateo C, Opiela M. Dilatometric study of phase transformations in 5 Mn steel subjected to different heat treatments. Materials. 2020;13:1–15. https://doi.org/10.3390/ma13040958. Ravi AM, Kumar A, Herbig M, Sietsma J, Santofimia MJ. Impact of austenite grain boundaries and ferrite nucleation on bainite formation in steels. Acta Mater. 2020;188:424–34. https://doi.org/10.1016/j.actamat.2020.01.065. Yoozbashi MN, Yazdani S, Wang TS. Design of a new nanostructured, high-Si bainitic steel with lower cost production. Mater Des. 2011;32:3248–53. https://doi.org/10.1016/j.matdes.2011.02.031. Pashangeh S, Somani M, Banadkouki SSG. Microstructural evolution in a high-silicon medium carbon steel fallowing quenching and isothermal holding above and below the Ms temperature. J Mater Res Technol. 2020;9:3438–46. https://doi.org/10.1016/j.jmrt.2020.01.081. Grajcar A, Kwasny W, Zalecki W. Microstructure-property relationships in TRIP aided medium-C bainitic steel with lamellar retained austenite. Mater Sci Technol. 2015;31:781–94. https://doi.org/10.1179/1743284714Y.0000000742. Mapelli C, Barella S, Gruttadauria A, Mombelli D, Bizzozero M, Veys X. γ decomposition in Fe–Mn–Al–C lightweight steels. J Mater Res Technol. 2020;9:4604–16. https://doi.org/10.1016/j.jmrt.2020.02.088. Tian J, Xu G, Zhou M, Hu H, Wan X. The effects of Cr and Al addition on transformation and properties in low-carbon bainitic steels. Metals. 2017;40:1–11. https://doi.org/10.3390/met7020040. Guo H, Zhou P, Zhao A, Zhi C, Ding R, Wang JX. Effects of Mn and Cr contents on microstructures and mechanical properties of low temperature bainitic steel. J Iron Steel Res Int. 2017;24:290–5. https://doi.org/10.1016/S1006-706X(17)30042-0. Liu SK, Zhang GY. The effect of Mn and Si on the morphology and kinetics of the bainite transformation in Fe–C–Ti alloys. Metall Trans A. 1990;21:1509–11. https://doi.org/10.1007/BF02672565. Changle Z, Fu H, Shenqqiang M, Yi D, Jian L, Zhenquo X, Yonqping L. Effect of Mn content on microstructure and properties of wear-resistant bainitic steel. Mater Res Express. 2019;6:1–22. https://doi.org/10.1088/2053-1591/ab1c8d. Tarek B, El-Shenawy E, El-Sabbagh A, Taha MA. Feasibility of 00.2% Nb-based microalloyed steel for the application of one-step quenching and partitioning heat treatment. Mater Sci Appl. 2021;12:374–87. https://doi.org/10.4236/msa.2021.128026. ASTM A1033-04; ASTM International: West Conshohocken, (2004). https://www.astm.org/. Accessed 25 Mar 2020 Shen Y, Yang S, Liu J, Liu H, Zhang R, Xu H, He Y. Study of micro segregation of high alloy Fe–Mn–C–Al steel. Steel Res Int. 2019. https://doi.org/10.1002/srin.201800546. Grajcar A, Kamińska M, Opiela M, Kalinowska-Ozgowicz E, Skrzypczyk P, Grzegorczyk B. Segregation of alloying elements in thermomechanically rolled medium-Mn multiphase steels. J Achiev Mater Manuf Eng. 2012;55:256–64. Garcia-Mateo C, Caballero FG, Bhadeshia HKDH. Acceleration of low-temperature bainite. ISIJ Int. 2003;43:1821–5. https://doi.org/10.2355/isijinternational.43.1821. Tian J, Xu G, Zhou M, Hu H, Wan X. The effects of Cr and Al addition on transformation and properties in low-carbon bainitic steels. Metals. 2017;7:1–11. https://doi.org/10.3390/met7020040. Farahani H, Xu W, Van der Zwaag S. Predicting the cooperative effect of Mn–Si and Mn–Mo on the incomplete bainite formation in quaternary Fe–C alloys. Phil Mag Lett. 2018;98:161–71. https://doi.org/10.1080/09500839.2018.1515505. Kral L, Million B, Cermak J. Diffusion of carbon and manganese in Fe–C–Mn. Def Diff Forum. 2007;263:153–8. https://doi.org/10.4028/www.scientific.net/DDF.263.153. De Moor E, Matlock DK, Speer JG, Merwin MJ. Austenite stabilization through manganese enrichment. Scr Mater. 2011;64:185–8. https://doi.org/10.1016/j.scriptamat.2010.09.040. Borgenstam A, Hillert M. Activation energy for isothermal martensite in ferrous alloys. Acta Mater. 1997;45:651–62. https://doi.org/10.1016/S1359-6454(96)00186-3. Navarro-Lopez A, Sietsma J, Santofimia MJ. Effect of prior athermal martensite on the isothermal transformation kinetics below Ms in a low-C high-Si steel. Metall Mater Trans A. 2016;47:1028–39. https://doi.org/10.1007/s11661-015-3285-6. Bohemen SMC. The nonlinear lattice expansion of iron alloys in the range 100–1600 K. Scri Mater. 2013;69:315–8. https://doi.org/10.1016/j.scriptamat.2013.05.009. Ravi AM, Navarro-Lopez A, Sietsma J, Santofimia MJ. Influence of martensite/austenite interfaces on bainite formation in low-alloy steels below Ms. Acta Mater. 2020;188:394–405. https://doi.org/10.1016/j.actamat.2020.02.003. Guo H, Feng X, Zhao A, Li Q, Ma J. Influence of prior martensite on bainite transformation, microstructure, and mechanical properties in ultra-fine bainitic steel. Materials. 2019;12:1–15. https://doi.org/10.3390/ma12030527. Smanio V, Sourmail T. Effect of partial martensite transformation on bainite reaction kinetics in different 1%C steels. Solid State Phenom. 2011;172–174:821–6. https://doi.org/10.4028/www.scientific.net/SSP.172-174.821. Hidalgo J, Celada-Casero C, Santofimia MJ. Fracture mechanisms and microstructure in a medium Mn quenching and partitioning steel exhibiting macrosegregation. Mater Sci Eng A. 2019;754:766–77. https://doi.org/10.1016/j.msea.2019.03.055. Toji Y, Miyamoto G, Raabe D. Carbon partitioning during quenching and partitioning heat treatment accompanied by carbide precipitation. Acta Mater. 2015;86:137–47. https://doi.org/10.1016/j.actamat.2014.11.049. Cornide J, Garcia-Mateo C, Capdevila C, Caballero FG. An assessment of the contributing factors to the nanoscale structural refinement of advanced bainitic steels. J Alloys Compd. 2013;577:43–7. https://doi.org/10.1016/j.jallcom.2011.11.066. Roberts CS. Effect of carbon on the volume fraction and lattic parameters of retained austenite and martensite. JOM. 1953;5:203–4. https://doi.org/10.1007/BF03397477. Marinelli P, Buraj A, Guillermet AF, Sade M. Lattice parameters of metastable structures in quenched Fe–Mn alloys. Part I: experimental techniques, bcc and fcc phases. Z Metallkd. 2000;91:957–62. Seki I, Nagata K. Lattice constant of iron and austenite including its supersaturation phase of carbon. ISIJ Int. 2005;45:1789–94. https://doi.org/10.2355/isijinternational.45.1789. Cheng L, Bottger A, Keijser ThH, Mittemeijer EJ. Lattice parameters of iron-carbon and iron–nitrogen martensites and austenites. Scr Met Mater. 1990;24:509–14. https://doi.org/10.1016/0956-716X(90)90192-J. Lehnhoff GR, Findley KO, De Cooman BC. The influence of silicon and aluminum alloying on the lattice parameter and stacking fault energy of austenitic steel. Scrip Mater. 2014;92:19–22. https://doi.org/10.1016/j.scriptamat.2014.07.019. Bhadeshia HKDH, Edmonds DV. Bainite in silicon steels: new composition–property approach Part 1. Met Sci. 1983;17:411–9. https://doi.org/10.1179/030634583790420600.