Nghiên cứu độ dẫn điện của chất điện phân polymer rắn dựa trên hợp chất PVA/GA với sự bổ sung axit acetic

Camila M. Cholant1, Marco P. Rodrigues1, Leandro L. Peres1, Raphael D. C. Balboni1, Luana U. Krüger1, Daniela N. Placido1, Wladimir H. Flores2, André Gündel2, Agnieszka Pawlicka3, César O. Avellaneda1
1Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
2Campus Bagé, Universidade Federal de Pampa, Bagé, Brazil
3IQSC-Universidade de São Paulo, São Carlos, Brazil

Tóm tắt

Nghiên cứu này khảo sát hành vi vận chuyển ion và điều tra cấu trúc của các chất điện phân polymer rắn (SPE) chứa poly(vinyl alcohol) (PVA) và gum arabic (GA) với lượng axit acetic khác nhau nhằm ứng dụng tiềm năng trong các thiết bị điện hóa. Hệ SPE được chuẩn bị bằng phương pháp đúc và được nghiên cứu bằng quang phổ điện trở (EIS), kính hiển vi lực nguyên tử (AFM), nhiễu xạ tia X (XRD) và quang phổ hấp thụ hồng ngoại biến đổi Fourier (FTIR). Độ dẫn ion tốt nhất được đo là 2,22 × 10−5 và 17,70 × 10−5 S.cm−1 ở 25 và 80 °C, tương ứng, cho PVA/GA chứa 42% khối lượng axit acetic. Phân tích FTIR đã xác nhận PVA, GA và các đỉnh đặc trưng –OH, –C=O và –COO− của axit acetic. Độ dẫn ion của SPE PVA/GA bị ảnh hưởng bởi các tính chất vận chuyển ion và độ vô định hình của nó, điều này đã được tiết lộ thông qua phân tích tách biệt các biểu đồ nhiễu xạ XRD. Thêm vào đó, hình ảnh AFM đã chứng minh bề mặt chủ yếu đồng đều của các mẫu.

Từ khóa

#điện phân polymer rắn #poly(vinyl alcohol) #gum arabic #axit acetic #độ dẫn ion #quang phổ điện trở #kính hiển vi lực nguyên tử #nhiễu xạ tia X #quang phổ hồng ngoại

Tài liệu tham khảo

Fenton DE, Parker JM, Wright PV (1973) Complexes of alcali-metal ions with poly(ethylene oxide). Polymer 14(11):589–589 Liang Y-H, Wang C-C, Chen C-Y (2008) Synthesis and characterization of a new network polymer electrolyte containing polyether in the main chains and side chains. Eur Polym J 44(7):2376–2384 Wright PV (1975) Electrical conductivity in complexes of poly(ethylene oxide). Br Polym J 7(5):319–327 Mahendrakar S, Anna M, Kumar JS, Reddy MJ (2017) Structural, morphological and electrical studies of plasticized polymer-salt electrolyte membrane and application to lithium ion batteries. Int J Appl Chem 13:477–490 Ma X, Yu J, He K (2006) Thermoplastic starch plasticized by glycerol as solid polymer electrolytes. Macromol Mater Eng 291(11):1407–1413 Samsudin AS, Isa MIN (2014) Conductivity and transport properties study of plasticized carboxymethyl cellulose (CMC) based solid biopolymer electrolytes (SBE). Adv Mater Res 856:118–122 Wang Y, Song S, Xu C, Hu N, Molenda J, Lu L (2019) Development of solid-state electrolytes for sodium-ion battery–a short review. Nano Mater Sci 1(2):91–100 Armand MB, Chabagno JM, Duclot MJ (1979) Proc. International Conference on Fast Ion Transport in Solids, Electrodes and Electrolytes, Lake Geneva, Wisconsin, U.S.A., 21–25/05/1979 Shukur M, Kadir M (2015) Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim Acta 158:152–165 Armand M (1994) The history of polymer electrolytes. Solid State Ionics 69(3-4):309–319 Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22(8):1259–1279 Vieira DF, Avellaneda CO, Pawlicka A (2007) Conductivity study of a gelatin-based polymer electrolyte. Electrochim Acta 53(4):1404–1408 Boopathi G, Pugalendhi S, Selvasekarapandian S, Premalatha M, Monisha S, Aristatil G (2017) Development of proton conducting biopolymer membrane based on agar–agar for fuel cell. Ionics 23(10):2781–2790 Zainuddin N, Rasali N, Samsudin A (2018) Study on the effect of PEG in ionic transport for CMC-NH 4 Br-based solid polymer electrolyte. Ionics 24(10):3039–3052 Hang AT, Tae B, Park JS (2010) Non-woven mats of poly (vinyl alcohol)/chitosan blends containing silver nanoparticles: fabrication and characterization. Carbohydr Polym 82(2):472–479 Caldeira I, Lüdtke A, Tavares F, Cholant C, Balboni R, Flores WH, Galio A, Pawlicka A, Avellaneda CO (2018) Ecologically friendly xanthan gum-PVA matrix for solid polymeric electrolytes. Ionics 24(2):413–420 Abdullah OG, Aziz SB, Rasheed MA (2018) Incorporation of NH 4 NO 3 into MC-PVA blend-based polymer to prepare proton-conducting polymer electrolyte films. Ionics 24(3):777–785 Rajendran S, Sivakumar M, Subadevi R, Wu NL, Lee JY (2007) Electrochemical investigations on the effect of dispersoid in PVA based solid polymer electrolytes. J Appl Polym Sci 103(6):3950–3956 Pradhan SS, Sarkar A (2009) Enhancement of electrical conductivity in the gum Arabica complex. Mater Sci Eng C 29(6):1790–1793 de Souza AG, Cesco CT, de Lima GF, Artifon SE, Rosa DS, Paulino AT (2019) Arabic gum-based composite hydrogels reinforced with eucalyptus and pinus residues for controlled phosphorus release. Inter J Biol Macromol 140:33–42 Singh B, Sharma S, Dhiman A (2017) Acacia gum polysaccharide based hydrogel wound dressings: synthesis, characterization, drug delivery and biomedical properties. Carbohydr Polym 165:294–303 Sokhal KS, Dasaroju G, Bulasara VK (2019) Formation, stability and comparison of water/oil emulsion using gum arabic and guar gum and effect of aging of polymers on drag reduction percentage in water/oil flow. Vacuum 159:247–253 Hossain KMZ, Felfel RM, Ogbilikana PS, Thakker D, Grant DM, Scotchford CA, Ahmed I (2018) Single solvent-based film casting method for the production of porous polymer films. Macromol Mat Eng 303(4):1700628 Lämmel C, Schneider M, Weiser M, Michaelis A (2013) Investigations of electrochemical double layer capacitor (EDLC) materials–a comparison of test methods. Mater Werkst 44(7):641–649 Raphael E, Avellaneda CO, Manzolli B, Pawlicka A (2010) Agar-based films for application as polymer electrolytes. Electrochim Acta 55(4):1455–1459 Perumal P, Selvin PC, Selvasekarapandian S, Sivaraj P (2019) Structural and electrical properties of bio-polymer pectin with LiClO4 solid electrolytes for lithium ion polymer batteries. Mater Today: Proc 8:196–202 Pawlicka A, Tavares FC, Dörr DS, Cholant CM, Ely F, Santos MJL, Avellaneda CO (2019) Dielectric behavior and FTIR studies of xanthan gum-based solid polymer electrolytes. Electrochim Acta 305:232–239 Saadiah M, Zhang D, Nagao Y, Muzakir S, Samsudin A (2019) Reducing crystallinity on thin film based CMC/PVA hybrid polymer for application as a host in polymer electrolytes. J Non-Cryst Solids 511:201–211 Buraidah M, Arof A (2011) Characterization of chitosan/PVA blended electrolyte doped with NH4I. J Non-Cryst Solids 357(16-17):3261–3266 Armand MB, Chabagno JM, Duclot MJ (1979) In: JN Mundy, GK Shenoy (eds.) Fast Ion Transport in Solids, eds. P. Vashishta, North-Holland, Amsterdam, pp. 131–136 Ramesh S, Yahaya A, Arof A (2002) Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152:291–294 Pillai PKC, Khurana P, Tripathi A (1986) Dielectric studies of poly(methyl methacrylate) polystyrene double-layer system. J Mater Sci Lett 5(6):629–632 Chetia J, Maullick M, Dutta A, Dass N (2004) Role of poly (2-dimethylaminoethylmethacerylate) salt as solid state ionics. Mater Sci Eng B 107(2):134–138 Kumar S, Prajapati G, Saroj A, Gupta P (2019) Structural, electrical and dielectric studies of nano-composite polymer blend electrolyte films based on (70–x) PVA–x PVP–NaI–SiO2. Phys B: Cond Matter 554:158–164 Pandey M, Joshi GM, Ghosh NN (2016) Electrical performance of lithium ion based polymer electrolyte with polyethylene glycol and polyvinyl alcohol network. Int J Polym Mater Polym Biomater 65(15):759–768 Selim A, Toth AJ, Haaz E, Fozer D, Szanyi A, Hegyesi N, Mizsey P (2019) Preparation and characterization of PVA/GA/laponite membranes to enhance pervaporation desalination performance. Sep Purif Technol 221:201–210 Vanjeri VN, Goudar N, Kasai D, Masti SP, Chougale RB (2019) Thermal and tensile properties study of 4-hydroxycoumarin doped polyvinyl alcohol/chitosan blend films. Chem Data Collect 23:100257 Zeng P, Chen X, Qin Y-R, Zhang Y-H, Wang X-P, Wang J-Y, Ning Z-X, Ruan Q-J, Zhang Y-S (2019) Preparation and characterization of a novel colorimetric indicator film based on gelatin/polyvinyl alcohol incorporating mulberry anthocyanin extracts for monitoring fish freshness. Food Res Int 126:108604 Xu T, Gao C, Feng X, Yang Y, Shen X, Tang X (2019) Structure, physical and antioxidant properties of chitosan-gum arabic edible films incorporated with cinnamon essential oil. Inter J Biol Macromol 134:230–236