Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên cứu hành vi mài mòn của các hợp chất Al-Si hợp kim siêu dư với ilmenit gia cố bằng chất bôi trơn rắn kép
Journal of Materials Engineering and Performance - Trang 1-11 - 2023
Tóm tắt
Trong nghiên cứu hiện tại, một nỗ lực đã được thực hiện nhằm chuẩn bị các hợp chất hợp kim nhôm (Al-Si17Cu4Mg siêu dư) có gia cố bằng ilmenit (FeTiO3; khoáng sản bãi biển). Đối với nghiên cứu, các hạt ilmenit có kích thước mịn (32-50 µm) và kích thước kép (F:C:: 4:1, trong đó F (32-50 µm) và C (75-106 µm)) (15 wt.%) đã được chọn làm vật liệu gia cố. Trong ma trận kim loại, sự phân bố đồng nhất của các hạt ilmenit đã được quan sát thông qua kính hiển vi quang học. Ở đây, sự tinh chế silicon sơ cấp và thứ cấp cũng đã được quan sát lên đến khoảng 60% như một kết quả của việc đưa vào hạt ilmenit. Khi so với hợp kim Al-Si17Cu4Mg siêu dư, các mẫu hợp chất đã chuẩn bị cho thấy khả năng chống mài mòn cao hơn khoảng 10%. Hơn nữa, sự hiện diện của các phụ gia bôi trơn (than chì và thiếc) trong các mẫu hợp chất đã giảm tổng cộng khoảng 9% mất mài mòn. Hành vi mài mòn của mẫu hợp chất được so sánh với gang xám nhằm đánh giá tính ứng dụng công nghiệp của mẫu đã chuẩn bị. Dựa trên những kết quả này, một cơ chế mất mài mòn chi tiết cũng đã được đề xuất dưới tải trọng 68,67 N cho khoảng cách trượt 3000 m, trong đó sự thống trị của mài mòn tách lớp đã được quan sát thấy hơn mài mòn kết dính trong cấu trúc vi mô SEM.
Từ khóa
Tài liệu tham khảo
S. Das, A.R. Siddiqui, and V. Bartaria, Evaluation of Aluminum Alloy Brake Drum for Automobile Application, Int. J. Sci. Technol. Res., 2013, 2(11), p 96–102.
A. Rehman, S. Das, and G. Dixit, Analysis of Stir Die Cast Al-SiC Composite Brake Drums Based on Coefficient of Friction, Tribol Int., 2012, 51, p 36–41. https://doi.org/10.1016/j.triboint.2012.02.007
M. Rajendran and A.R. Suresh, Characterisation of Aluminum Metal Matrix Composites and Evaluation of Thermal Properties, Mater. Today Proc., 2018, 5, p 8314–20.
S. Kumar, R.S. Panwar, and O.P. Pandey, Effect of Dual Reinforced Ceramic Particles on High Temperature Tribological Properties of Aluminum Composites, Ceram Int., 2013, 39(6), p 6333–6342.
V. Singhal and O.P. Pandey, Dry Sliding Wear Study of Solid Lubricants and Sillimanite-Reinforced Aluminum Alloy Composites, J. Mater. Eng. Perform., 2021 https://doi.org/10.1007/s11665-021-05975-y
R. Arora, A. Sharma, S. Kumar, G. Singh, and O.P. Pandey, Effect of Tribo-oxide Layers on the Sliding Wear Behaviour of Rutile Reinforced LM13 Alloy Composites at High Temperature and Pressure. In: Processing and Fabrication of Advanced Materials–XXIII
S. Mishra, A. Patnaik, and S.R. Kumar, Comparative Analysis of Wear Behavior of Garnet and Fly Ash Reinforced Al7075 Hybrid Composite, Materwiss Werksttech., 2019, 50(1), p 86–96.
P.K. Singh, P.K. Singh, and K. Sharma, Manufacturing and Categorization of AL/TIB2 Metal Matrix Compound by Means of Stir Casting Method, Mater. Today Proc., 2021, 45, p 3568–73. https://doi.org/10.1016/j.matpr.2020.12.1091
S.Y. Pawar and Y.R. Kharde, Effect of Dual Reinforced Ceramic Particles on Elevated Temperature Tribological Properties of Hybrid Aluminium Matrix Composites. Adv. Mater. Process. Technol. (2021)
A. Baradeswaran and A. Elaya Perumal, Study on Mechanical and Wear Properties of Al 7075/Al2O 3/Graphite Hybrid Composites, Compos. Part B Eng., 2014, 56, p 464–71. https://doi.org/10.1016/j.compositesb.2013.08.013
S. Sharma, T. Nanda, and O.P. Pandey, Effect of Dual Particle Size (DPS) on Dry Sliding Wear Behaviour of LM30/Sillimanite Composites, Tribol Int., 2018, 123, p 142–154.
R. Sharma, K. Sharma, and S.B. Kumar, Machining Process Parameters Optimization of Aluminium Alloy AA6262 T6 for CNC Turning by Grey Relational Analysis, IOP Conf Ser Mater. Sci. Eng., 2021, 1116(1), p 012016.
A. Sharma and V.K. Dwivedi, Influence of Tool Rotational Speed on Mechanical Properties of Aluminium alloy AA 7075-T6 During Friction Stir welding Process, Adv. Mater. Process Technol., 2021 https://doi.org/10.1080/2374068X.2021.1953928
B. Singh, K.K. Saxena, P. Singhal, and T.C. Joshi, Role of Various Tool Pin Profiles in Friction Stir Welding of AA2024 Alloys, J. Mater. Eng. Perform., 2021, 30(11), p 8606–15. https://doi.org/10.1007/s11665-021-06017-3
J. Mohamadigangaraj, S. Nourouzi, and H.J. Aval, Microstructure, Mechanical and Tribological Properties of A390/SiC Composite Produced by Compocasting, Trans. Nonferr. Met. Soc. China., 2019, 29(4), p 710–21. https://doi.org/10.1016/S1003-6326(19)64981-2
K.V.K. Raj, M.H. Annaiah, T.G. Gangadhar, and V. Girija, Evaluation of Mechanical Properties of A390 Reinforced with Boron Carbide MMC. In: AIP Conference Proceedings. (2020) 2274(October)
R.K. Singh, A. Telang, and S. Das, Microstructure, Mechanical Properties and Two-Body Abrasive Wear Behaviour of Hypereutectic Al-Si-SiC Composite, Trans. Nonferr. Met. Soc. China, 2020, 30(1), p 65–75. https://doi.org/10.1016/S1003-6326(19)65180-0
M. Singh, D.P. Mondal, O.P. Modi, and A.K. Jha, Two-Body Abrasive wear Behaviour of Aluminium Alloy-Sillimanite Particle Reinforced Composite, Wear, 2002, 253(3–4), p 357–368.
R. Arora, S. Kumar, G. Singh, and O.P. Pandey, Effect of Applied Pressure on the Tribological Behaviour of Dual Particle Size Rutile Reinforced LM13 Alloy Composite, Charact. Min. Met. Mater., 2016, 2015, p 755–62.
E. Omrani, A.D. Moghadam, P.L. Menezes, and P.K. Rohatgi, Influences of Graphite Reinforcement on the Tribological Properties of Self-Lubricating Aluminum Matrix Composites for Green Tribology, Sustainability, and Energy Efficiency—A Review, Int. J. Adv. Manuf. Technol., 2016, 83(1–4), p 325–346.
R. Kumar, H. Bhowmick, D. Gupta, and S. Bansal, Development and Characterization of Multiwalled Carbon Nanotube-Reinforced Microwave Sintered Hybrid Aluminum Metal Matrix Composites: An Experimental Investigation on Mechanical and Tribological Performances, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2021, 235, p 2310–2323.
S.S. Murugan and T.P.D. Rajan, Characterization of Graphite-Reinforced LM30-Aluminium Matrix Composite Processed through Gravity and Vertical Centrifugal Casting Processes, J. Inst. Eng. Ser. D, 2021, 102(1), p 19–26. https://doi.org/10.1007/s40033-020-00242-1
N.C. Kaushik and R.N. Rao, Effect of Grit Size on Two Body Abrasive Wear of Al 6082 Hybrid Composites Produced by Stir Casting Method, Tribol Int., 2016, 102, p 52–60.
L. Rasidhar, A. Ramakrishna, and C.S. Rao, Experimental Investigation on Mechanical Properties of Ilmenite based Al Nanocomposites, Int. J. Eng. Sci. Technol., 2013, 5(05), p 1025–1030.
M. Elwan, A. Fathy, A. Wagih, A.R.S. Essa, A. Abu-Oqail, and A.E. El-Nikhaily, Fabrication and Investigation on the Properties of Ilmenite (FeTiO3)-based Al Composite by Accumulative Roll Bonding, J. Compos. Mater., 2019, 54(10), p 1259–71.
C.A.V. Kumar and J.S. Rajadurai, Influence of Rutile (TiO2) Content on Wear and Microhardness Characteristics of Aluminium-Based Hybrid Composites Synthesized by Powder Metallurgy, Trans. Nonferr. Met. Soc. China, 2016, 26(1), p 63–73.
S. Sharma, T. Nanda, and O.P. Pandey, Effect of Particle Size on Dry Sliding Wear Behaviour of Sillimanite Reinforced Aluminium Matrix Composites, Ceram Int., 2018, 44(1), p 104–14. https://doi.org/10.1016/j.ceramint.2017.09.132
R. Gupta, S. Sharma, T. Nanda, and O.P. Pandey, Wear Studies of Hybrid AMCs Reinforced with Naturally Occurring Sillimanite and Rutile Ceramic Particles for Brake-Rotor Applications, Ceram Int., 2020, 46(10), p 16849–16859.
A. Sharma, S. Kumar, G. Singh, and O.P. Pandey, Effect of Particle Size on wear Behavior of Al-Garnet Composites, Part Sci. Technol., 2015, 33(3), p 234–239.
R. Raja, S. Jannet, and M.A. Thampy, Synthesis and Characterization of AA5083 and AA2024 Reinforced with SiO2 Particles, Bull. Polish Acad. Sci. Tech. Sci., 2018, 66(2), p 127–132.
V. Singhal and O. Prakash Pandey, Study of Wear Losses and Frictional Heat Dissipation During Dry Sliding Wear of Ilmenite Reinforced Al-Alloy Composite, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2022, 236, p 6250–6268.
V. Singhal and O.P. Pandey, Utilization of Natural Mineral Ilmenite-Reinforced Composites for the Dry Sliding Application, Int. J. Met., 2021 https://doi.org/10.1007/s40962-021-00724-2
R.S. Panwar and O.P. Pandey, Study of Wear Behavior of Zircon Sand-Reinforced LM13 Alloy Composites at Elevated Temperatures, J. Mater. Eng. Perform., 2013, 22(6), p 1765–1775.
A. Fathy, O. El-Kady, and M.M.M. Mohammed, Effect of Iron Addition on Microstructure, Mechanical and Magnetic Properties of Al-Matrix Composite Produced by Powder Metallurgy Route, Trans. Nonferr. Met. Soc. China English Ed., 2015, 25(1), p 46–53.
H. Giefers and M. Nicol, Equations of State of Several Iron-Tin Intermetallic Compounds, J. Phys. Chem. Solids., 2006, 67(9–10), p 2027–2032.
R. Gecu and A. Karaaslan, Sliding Wear of the Ti-Reinforced Al Matrix Bi-metal Composite: A Potential Replacement to Conventional SiC-Reinforced Composites for Automotive Application, Int. J. Met., 2019, 13(3), p 641–52. https://doi.org/10.1007/s40962-018-0281-9
D. Priyadarshi and R.K. Sharma, Porosity in Aluminium Matrix Composites: Cause, Effect and Defence, Mater. Sci. Ind. J., 2016, 14, p 119–129.
A.E.A. Al-maamari, A.K.M.A. Iqbal, and D.M. Nuruzzaman, Mechanical and Tribological Characterization of Self-Lubricating Mg-SiC-Gr Hybrid Metal Matrix Composite (MMC) Fabricated Via Mechanical Alloying, J. Sci. Adv. Mater. Dev., 2020 https://doi.org/10.1016/j.jsamd.2020.09.002
Singhal V and Pandey OP, Influence of Dual Range Particle Size on Wear and Friction Properties of Ilmenite Reinforced Aluminium Metal Matrix Composite. Silicon (2022)
T.S. Mahmoud, Tribological Behaviour of A390/Grp Metal-Matrix Composites Fabricated Using a Combination of Rheocasting and Squeeze Casting Techniques, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2008, 222(2), p 257–265.
Doddamani S, Kaleemulla M, Begum Y, KJ A, and Anand KJ, An Investigation on Wear Behavior of Graphite Reinforced Aluminum Metal Matrix Composites. J. Res. Sci. Technol. Eng. Manag. (2017) 1–6
K. Kaur and O.P. Pandey, High Temperature Sliding Wear of Spray-Formed Solid-Lubricated Aluminum Matrix Composites, J. Mater. Eng. Perform., 2013, 22(10), p 3101–3110.
J.F. Archard, Contact and Rubbing of Flat Surfaces, J. Appl. Phys., 1953, 24(8), p 981–988.
R. Gupta, T. Nanda, and O.P. Pandey, Comparison of Wear Behaviour of LM13 Al-Si Alloy Based Composites Reinforced with Synthetic (B4C) and Natural (ilmenite) Ceramic Particles, Trans. Nonferr. Met. Soc. China, 2021, 31(12), p 3613–3625.
A.Ã. Daoud, M.T.A. El-khair, and M.T. Abou El-khair, Wear and Friction Behavior of Sand Cast Brake Rotor Made of A359-20 vol% SiC Particle Composites Sliding Against Automobile Friction Material, Tribol Int., 2010, 43(3), p 544–53. https://doi.org/10.1016/j.triboint.2009.09.003
P.J. Blau, B.C. Jolly, J. Qu, W.H. Peter, and C.A. Blue. Tribological Investigation of Titanium-Based Materials for Brakes. Wear. (2007) 263(7-12 SPEC. ISS.):1202–1211
S. Basavarajappa, G. Chandramohan, K. Mukund, M. Ashwin, and M. Prabu, Dry Sliding Wear Behavior of Al 2219/SiCp-Gr Hybrid Metal Matrix Composites. J. Mater. Eng. Perform. [Internet]. 2006 Dec 1 [cited 2019 May 25];15(6):668–74. http://link.springer.com/https://doi.org/10.1361/105994906X150803