Study of the Role of Genes Involved in the Metabolism of Histamine in the Development of Allergic Respiratory Diseases

O. N. Savelieva1, А. С. Карунас1, А. Р. Бикташева2, A.O. Vlasova1, I. M. Khidiyatova3, Э. И. Эткина2, Elza Khusnutdinova3
1Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Center, Russian Academy of Sciences, 450054, Ufa, Russia
2Bashkir State Medical University, 450008, Ufa, Russia
3Ufa University of Science and Technology, 450076, Ufa, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ruzikulov, A., Clinical and allergologic features and distribution of allergic rhinitis and bronchial asthma, Evraziiskii Zh. Med. Estestv. Nauk, 2022, vol. 2022, no. 11, pp. 87—96. https://in-academy.uz/index.php/EJMNS/article/view/4400.

Gautam, Y., Johansson, E., and Mersha, T.B., Multi-omics profiling approach to asthma: an evolving paradigm, J. Pers. Med., 2022, vol. 12, no. 1, p. 66. https://doi.org/10.3390/jpm12010066

Zhang, Y., Huang, Y., Chen, W., et al., Identification of key genes in allergic rhinitis by bioinformatics analysis, J. Int. Med. Res., 2021, vol. 49, no. 7, pp. 1—14. https://doi.org/10.1177/03000605211029521

Astaf’eva, N.G., Baranov, A.A., Vishneva, E.A., et al., Allergic rhinitis, Klin. Rekomm., 2020, vol. 28, no. 4, pp. 246—256. https://doi.org/10.17116/rosrino202028041246

Choi, B.Y., Han, M., Kwak, J.W., and Kim, T.H., Genetics and epigenetics in allergic rhinitis, Genes, 2021, vol. 12. https://doi.org/10.3390/genes12122004

Bousquet, J., Anto, J.M., Bachert, C., et al., Allergic rhinitis, Nat. Rev., 2020, vol. 6, no. 95, pp. 1—17. https://doi.org/10.1038/s41572-020-00227-0

Thangam, E.B., Jemima, E.A., Singh, H., et al., The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: the hunt for new therapeutic targets, Front. Immunol., 2018, vol. 9, p. 1873. https://doi.org/10.3389/fimmu.2018.01873

Anvari, S., Vyhlidal, C.A., Dai, H., et al., Genetic variation along the histamine pathway in children with allergic versus nonallergic asthma, Am. J. Respir. Cell Mol. Biol., 2015, vol. 53, no. 6, pp. 802—809. https://doi.org/10.1165/rcmb.2014-0493OC

Meza-Velázquez, R., López-Márquez, F., Espinosa-Padilla, S., et al., Association between two polymorphisms of histamine-metabolising enzymes and the severity of allergic rhinitis in a group of Mexican children, Allergol. Immunopathol. (Madrid), 2016, vol. 44, no. 5, pp. 433—438. https://doi.org/10.1016/j.aller.2016.01.002

Kucher, A.N. and Cherevko, N.A., Genes of the histamine pathway and common diseases Russ. J. Genet., 2018, vol. 54, no. 1, pp. 12—26. https://doi.org/10.1134/S1022795418010088

Savelieva, O.N., Karunas, A.S., Fedorova, Yu.Yu., et al., Analysis of association between histamine receptor gene HRH1, HRH2, HRH3, HRH4 polymorphisms and asthma in children, Pulmonologiya, 2021, no. 31(6), pp. 729—738. https://doi.org/10.18093/0869-0189-2021-31-6-729-738

Savelieva, O.N., Karunas, A.S., Fedorova, Yu.Yu., et al., Association analysis of polymorphic variants in ALDH7A1, AOC1, PSAP, ADCYAP1 genes involved in the histamine metabolism with asthma development in individuals from the Republic of Bashkortostan, Yakutsk. Med. Zh., 2023, no. 1(81), pp. 10—13. https://doi.org/10.25789/YMJ.2023.81.02

Savelieva, O.N., Karunas, A.S., Fedorova, Yu.Yu., et al., Association analysis of amine oxidase 1 AOC1 and histamine-n-methyl-transferase HNMT genes polymorphism with the development of asthma in children, Yakutsk. Med. Zh., 2020, no. 4 (72), pp. 20—23. https://doi.org/10.25789/YMJ.2020.72.05

García-Martín, E., García-Menaya, J., Sanchez, B., et al., Polymorphisms of histamine-metabolizing enzymes and clinical manifestations of asthma and allergic rhinitis, Clin. Exp. Allergy, 2007, vol. 37, pp. 1175—1182. https://doi.org/10.1111/j.1365-2222.2007.02769.x

Refaat, M.M., Abdel-Rehim, A.S., Elmahdi, A.R., et al., Diamine oxidase enzyme: a novel biomarker in respiratory allergy, Int. Forum Allergy Rhinol., 2019, vol. 9, no. 12. https://doi.org/10.1002/alr.22426

Mayo-Yáñez, M., Díaz-Díaz, A., Vázquez-Barro, J.C., et al., Relationship between allergic rhinitis and diamine oxidase activity: a preliminary report, Allergol. Select., 2021, vol. 5, pp. 187—194. https://doi.org/10.5414/ALS400537

Chiba, Y., Ueda, C., Kohno, N., et al., Attenuation of relaxing response induced by pituitary adenylate cyclase-activating polypeptide in bronchial smooth muscle of experimental asthma, Am. J. Physiol.: Lung Cell Mol. Physiol., 2020, vol. 319, no. 5, pp. L786—L793. https://doi.org/10.1152/ajplung.00315.2020

Mihalj, H., Butković, J., Tokić, S., et al., Expression of oxidative stress and inflammation-related genes in nasal mucosa and nasal polyps from patients with chronic rhinosinusitis, Int. J. Mol. Sci., 2022, vol. 23, no. 10. https://doi.org/10.3390/ijms23105521

Fernández-Novoa, L., Corzo, L., Seoane, S., and Cacabelos, R.A., Genomic approach to histamine function, J. Genomic Med. Pharmacogenomics, 2017, vol. 1, no. 2, pp. 233—241.

Szczepankiewicz, A., Breborowicz, A., Sobkowiak, P., and Popiel, A., Polymorphisms of two histamine-metabolizing enzymes genes and childhood allergic asthma: a case—control study, Clin. Mol. Allergy, 2010, vol. 8. https://doi.org/10.1186/1476-7961-8-14

Li, X., Howard, T.D., Zheng, S.L., et al., Genome-wide association study of asthma identifies RAD50-IL13 and HLA-DR/DQ regions, J. Allergy Clin. Immunol., 2010, vol. 125, no. 2, pp. 328—335. https://doi.org/10.1016/j.jaci.2009.11.018