Study of ss-DNA Adsorption and Nano-mechanical Properties on Mica Substrate with Surface Forces Apparatus

Chinese Journal of Mechanical Engineering - Tập 31 - Trang 1-8 - 2018
Gui-Bin Shen1,2, Ya-Jing Kan1,2, Min-Hua Chen2, Yun-Fei Chen1,2
1Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, China
2School of Mechanical Engineering, Southeast University, Nanjing, China

Tóm tắt

Many DNA-based devices need to build stable and controllable DNA films on surfaces. However, the most commonly used method of film characterization, namely, the probe-like microscopes which may destroy the sample and substrate. Surface Forces Apparatus (SFA) technique, specializing in surface interaction studies, is introduced to investigate the effects of DNA concentration on the formation of single-stranded DNA (ss-DNA) film. The result demonstrates that 50 ng/μL is the lowest concentration that ss-DNA construct a dense layer on mica. Besides, it is also indicated that at different DNA concentrations, ss-DNA exhibit diverse morphology: lying flat on surface at 50 ng/μL while forming bilayer or cross-link at 100 ng/μL, and these ss-DNA structures are stable enough due to the repeatability even under the load of 15 mN/m. At the same time, an obvious adhesion force is measured: −6.5 mN/m at 50 ng/μL and −5.3 mN/m at 100 ng/μL, respectively, which is attributed to the ion-correlation effect. Moreover, the atomic force microscopy (AFM) images reveal the entire surface is covered with wormlike ss-DNA and the measured surface roughness (1.8±0.2 nm) also matches well with the film thickness by SFA. The desorption behaviors of ss-DNA layer from mica surface occur by adding sodium salt into gap buffer, which is mainly ascribed to the decreased ion-ion correlation force. This paper employing SFA and AFM techniques to characterize the DNA film with flexibility and stable mechanical ability achieved by ion bridging method, is helpful to fabricate the DNA-based devices in nanoscale.

Tài liệu tham khảo

M R Jones, N C Seeman, C A Mirkin. Programmable materials and the nature of the DNA bond. Science, 2015, 347(6224): 1260901. S Vellampatti, S B Mitta, J A Kim, et al. Streptavidin bound DNA open tube and Zn2+–doped DNA open lattice. Current Applied Physics, 2015, 15(8): 851–856. M L Yola, T Eren, N Atar. A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim Acta, 2014, 125: 38–47. F Yan, H Tang. Application of thin–film transistors in label–free DNA biosensors. Expert Review of Molecular Diagnostics, 2014, 10(5): 547–549. T Liedl, T L Sobey, F C Simmel. DNA–based nanodevices. Nano Today, 2007, 2(2): 36–41. K M Horsman, J M Bienvenue, K R Blasier, et al. Forensic DNA analysis on microfluidic devices: a review. Journal of Forensic Sciences, 2007, 52(4): 784–799. C M Niemeyer. Functional devices from DNA and proteins. Nano Today, 2007, 2(2): 42-52. C Debouck, P N Goodfellow. DNA microarrays in drug discovery and development. Nature Genetics, 1999, 21: 48–50. M Schena, D Shalon, R W Davis, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270(5235): 467–470. S Surana, A R Shenoy, Y Krishnan. Designing DNA nanodevices for compatibility with the immune system of higher organisms. Nature Nanotechnology, 2015, 10(9): 741–747. L L Sun, D X Zhao, Y Zhang, et al. DNA adsorption and desorption on mica surface studied by atomic force microscopy. Applied Surface Science, 2011, 257(15): 6560–6567. Y H Song, C L Guo, L L Sun, et al. Effects of bridge ions, DNA species, and developing temperature on flat-lying DNA monolayers. The Journal of Physical Chemistry B, 2007, 111(2): 461–468. Y J Kan, Q Y Tan, G S Wu, et al. Study of DNA adsorption on mica surfaces using a surface force apparatus. Scientific Reports, 2015, 5: 8442. J Adamcik, D V Klinov, G Witz, et al. Observation of single–stranded DNA on mica and highly oriented pyrolytic graphite by atomic force microscopy. FEBS Letters, 2006, 580(24): 5671–5675. S Bashar, S Kim, S U Hwang, et al. Coverage percentage and coverage rate of different DNA nanostructures grown on a mica substrate. Current Applied Physics, 2015, 15(11): 1358–1363. Z L Guo, Y W Wang, A Yang, et al. The effect of pH on charge inversion and condensation of DNA. Soft Matter, 2016, 12(31): 6669–6674. L S Shlyakhyenko, A A Gall, Y L Lyubchenko. Mica functionalization for imaging of DNA and protein–DNA complexes with atomic force microscopy. Methods in Molecular Biology, 2013, 931: 295–312. A F Raigoza, J W Dugger, L J Webb. Review: recent advances and current challenges in scanning probe microscopy of biomolecular surfaces and interfaces. ACS Applied Materials & Interfaces, 2013, 5(19): 9249–9261. E Shapir, L Sagiv, N Borovok, et al. High–resolution STM imaging of novel single G4–DNA molecules. The Journal of Physical Chemistry B, 2008, 112(31): 9267–9269. Y Y Cao, K Z Kao, C Y Mou, et al. Oriented chiral DNA–Silica film guided by a natural mica substrate. Angewandte Chemie International Edition, 2016, 55(6): 2037–2041. N A Cervantes, B Gutierrez. Robust deposition of lambda DNA on mica for imaging by AFM in air. Scanning, 2014, 36(6): 561–569. A Yacoot, L Koenders. Aspects of scanning force microscope probes and their effects on dimensional measurement. Journal of Physics D: Applied Physics, 2008, 41(10): 103001. E W Danner, Y Kan, M U Hammer, et al. Adhesion of mussel foot protein Mefp–5 to mica: an underwater superglue. Biochemistry, 2012, 51(33): 6511–6518. D J Billingsley, A J Lee, N A Johansson, et al. Patchiness of ion–exchanged mica revealed by DNA binding dynamics at short length scales. Nanotechnology, 2014, 25(2): 025704. D Pastre, O Pietrement, A Zozime, et al. Study of the DNA/ethidium bromide interactions on mica surface by atomic force microscope: influence of the surface friction. Biopolymers, 2005, 77(1): 53–62. N H Thomson, S Kasas, B Smith, et al. Reversible binding of DNA to mica for AFM imaging. Langmuir, 1996, 12(24): 5905–5908. D Pastre, L Hamon, F Landousy, et al. Anionic polyelectrolyte adsorption on mica mediated by multivalent cations: a solution to DNA imaging by atomic force microscopy under high ionic strengths. Langmuir, 2006, 22(15): 6651–6660. H Zapletalová, J Přibyl, M Ambrož, et al. Improved method for Mica functionalization used in single molecule imaging of DNA with atomic force microscopy. Mediterranean Journal of Chemistry, 2016, 5(5): 589–598. H G Hansma, K J Kim, D E Laney, et al. Properties of biomolecules measured from atomic force microscope images: a review. Journal of Structural Biology, 1997, 119(2): 99–108. F Pincet, E Perez, G Bryant, et al. Long–range attraction between nucleosides with short–range specificity: Direct measurements. Physical Review Letters, 1994, 73(20): 2780–2783. H G Hansma, D E Laney. DNA binding to mica correlates with cationic radius: assay by atomic force microscopy. Biophysical Journal, 1996, 70(4): 1933–1939. H Cheng, K Zhang, J A Libera, et al. Polynucleotide adsorption to negatively charged surfaces in divalent salt solutions. Biophysical Journal, 2006, 90(4): 1164–1174. D Pastre, O Pirtrement, S Fusil, et al. Adsorption of DNA to mica mediated by divalent counterions: a theoretical and experimental study. Biophysical Journal, 2003, 85(4): 2507–2518. P E Vandeventer, J S Lin, T J Zwang, et al. Multiphasic DNA adsorption to silica surfaces under varying buffer, pH, and ionic strength conditions. The Journal of Physical Chemistry B, 2012, 116(19): 5661–5670. M L Sushko, A L Shluger, C Rivetti. Simple model for DNA adsorption onto a mica surface in 1:1 and 2:1 electrolyte solutions. Langmuir, 2006, 22(18): 7678–7688. S W Chen, B Honig. Monovalent and divalent salt effects on electrostatic free energies defined by the nonlinear Poisson–Boltzmann equation: application to DNA binding reactions. The Journal of Physical Chemistry B, 1997, 101(44): 9113–9118. J N Israelachvili, N A Alcantar, N Maeda, et al. Preparing contamination–free mica substrates for surface characterization, force measurements, and imaging. Langmuir, 2004, 20(9): 3616–3622. G T Zhao, D Cai, G S Wu, et al. A study of structure and properties of molecularly thin methanol film using the modified surface forces apparatus. Microscopy Research and Technique, 2014, 77(11): 851–856. J Israelachvili, Y Min, M Akbulut, et al. Recent advances in the surface forces apparatus (SFA) technique. Reports on Progress in Physics, 2010, 73(3): 036601. Y Goto, T Haga, I Yanagi, et al. Deceleration of single–stranded DNA passing through a nanopore using a nanometre–sized bead structure. Scientific Reports, 2015, 5: 16640. J G Duguid, V A Bloomfield. Aggregation of melted DNA by divalent metal ion–mediated cross–linking. Biophysical Journal, 1995, 69(6): 2642–2648. D E Yates, S Levine, T W Healy. Site–binding model of the electrical double layer at the oxide/water interface. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1974, 70: 1807–1818. G T Zhao, W C Guo, Q Y Tan, et al. Force measurement between mica surfaces in electrolyte solutions. Journal of Southeast University, 2013, 29(1): 57–61.