Study of seismic behavior of PHC piles with partial normal-strength deformed bars
Tóm tắt
Nine PHC piles with partial normal-strength deformed bars were prepared in present study, and cyclic loading tests were implemented to evaluate these piles’ seismic performance. The influence of the axial compression ratio and the amount of normal-strength deformed bars on failure modes, crack patterns, strength, stiffness, and ductility were examined. The test findings indicate that the change of axial compression ratio has a noticeable influence on the failure mode of PHC piles. A larger axial compression ratio results in a higher cracking bending resistance, ultimate bending resistance, and initial stiffness, but the propagation heights of flexural cracks decrease as the axial compression ratio increases. Furthermore, increasing the amount of normal-strength deformed bars causes a slight decrease in ductility. Finally, a calculation formula was proposed to predict the flexural capacity of PHC piles with partial normal-strength deformed bars.