Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation

Springer Science and Business Media LLC - Tập 85 Số 2 - Trang 1217-1222 - 2016
Xing Lü1, Wen‐Xiu Ma2
1Department of Mathematics, Beijing Jiao Tong University, Beijing 100044, China
2Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Rajan Mani, M.S., Mahalingam, A.: Nonautonomous solitons in modified inhomogeneous Hirota equation: soliton control and soliton interaction. Nonlinear Dyn. 79, 2469 (2015)

Biswas, A.: Solitary waves for power-law regularized longwave equation and R (m, n) equation. Nonlinear Dyn. 59, 423 (2010)

Biswas, A.: Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients. Nonlinear Dyn. 58, 345 (2009)

Biswas, A., Khalique, C.M.: Stationary solutions for nonlinear dispersive Schrödinger equation. Nonlinear Dyn. 63, 623 (2011)

Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

Biswas, A.: Optical solitons in magneto-optic waveguides with spatio-temporal dispersion. Frequenz 68, 445 (2014)

Savescu, M., Bhrawy, A.H., Hilal, E.M., Alshaery, A.A., Biswas, A.: Optical solitons in magneto-optic waveguides with spatio-temporal dispersion. Frequenz 68, 445 (2014)

Michelle, S., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Zhou, Q., Biswas, A.: Optical solitons in DWDM system with four-wave mixing. Optoelectron. Adv. Mater. 9, 14 (2015)

Guzman, J.V., Hilal, E.M., Alshaery, A.A., Bhrawy, A.H., Mahmood, M.F., Moraru, L., Biswas, A.: Thirring optical solitons with spatio-temporal dispersion. Proc. Rom. Acad. Ser. A 16, 41 (2015)

Wang, D.S., Yin, S., Tian, Y., Liu, Y.F.: Integrability and bright soliton solutions to the coupled nonlinear Schrödinger equation with higher-order effects. Appl. Math. Comput. 229, 296 (2014)

Wang, D.S., Ma, Y.Q., Li, X.G.: Prolongation structures and matter-wave solitons in F1 spinor Bose-Einstein condensate. Commun. Nonlinear Sci. Numer. Simul. 19, 3556 (2014)

Dai, C.Q., Wang, X.G., Zhou, G.Q.: Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials. Phys. Rev. A 89, 013834 (2014)

Dai, C.Q., Wang, Y.Y., Zhang, X.F.: Controllable Akhmediev breather and Kuznetsov-Ma soliton trains in PT-symmetric coupled waveguides. Opt. Express 22, 29862 (2014)

Lü, X., Ma, W.X., Yu, J., Lin, F.H., Khalique, C.M.: Envelope bright- and dark-soliton solutions for the Gerdjikov–Ivanov model. Nonlinear Dyn. 82, 1211 (2015)

Ma, W.X., Qin, Z.Y., Lü, X.: Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dyn. 84, 923 (2016)

Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379, 1975 (2015)

Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496 (1979)

Gilson, C.R., Nimmo, J.J.C.: Lump solutions of the BKP equation. Phys. Lett. A 147, 472 (1990)

Kaup, D.J.: The lump solutions and the Bäklund transformation for the three-dimensional three-wave resonant interaction. J. Math. Phys. 22, 1176 (1981)

Imai, K.: Dromion and lump solutions of the Ishimori-I equation. Prog. Theor. Phys. 98, 1013 (1997)

Yu, J. C., Lü, X.: Study on the resonant behavior of N-wave solutions to a Hirota bilinear equation. Appl. Math. Comp. submitted, (2015)

Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

Ma, W.X.: Bilinear equations and resonant solutions characterized by Bell polynomials. Rep. Math. Phys. 72, 41 (2013)

Ma, W.X.: Trilinear equations, bell polynomials, and resonant solutions. Front. Math. China 8, 1139 (2013)

Bell, E.T.: Exponential polynomials. Ann. Math. 35, 258 (1934)

Lü, X., Tian, B., Sun, K., Wang, P.: Bell-polynomial manipulations on the Bäcklund transformations and Lax pairs for some soliton equations with one Tau-function. J. Math. Phys. 51, 113506 (2010)

Lü, X., Tian, B., Qi, F.H.: Bell-polynomial construction of Bäcklund transformations with auxiliary independent variable for some soliton equations with one Tau-function. Nonlinear Anal. Real World Appl. 13, 1130 (2012)

Ma, W.X., Fan, E.G.: Linear superposition principle applying to Hirota bilinear equations. Comput. Math. Appl. 61, 950 (2011)

Ma, W.X., Zhang, Y., Tang, Y.N., Tu, J.Y.: Hirota bilinear equations with linear subspaces of solutions. Appl. Math. Comput. 218, 7174 (2012)

Müller, P., Garrett, C., Osborne, A.: Roguewaves. Oceanography 18, 66 (2005)

Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054 (2007)