Study of Wireless Communication Technologies on Internet of Things for Precision Agriculture
Tóm tắt
Từ khóa
Tài liệu tham khảo
Navarro-Hellín, H., Martínez-del-Rincon, J., Domingo-Miguel, R., Soto-Valles, F., & Torres-Sánchez, R. (2016). A decision support system for managing irrigation in agriculture. Computers and Electronics in Agriculture, 124, 121–131.
Ojha, T., Misra, S., & Raghuwanshi, N. S. (2015). Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Computers and Electronics in Agriculture, 118, 66–84.
Ferrández-Pastor, F. J., García-Chamizo, J. M., Nieto-Hidalgo, M., & Mora-Martínez, J. (2018). Precision agriculture design method using a distributed computing architecture on internet of things context. Sensors, 18, 1731.
Martínez, R., Pastor, J. Á., Álvarez, B., & Iborra, A. (1979). A testbed to evaluate the FIWARE-based IoT platform in the domain of precision agriculture. Sensors, 2016, 16.
Pratim, R. P. (2017). Internet of things for smart agriculture: Technologies, practices and future direction. Journal of Ambient Intelligence and Smart Environments, 9, 395–420.
Ferrandez-Pastor, F. J., Garcia-Chamizo, J. M., Nieto-Hidalgo, M., Mora-Pascual, J., & Mora-Martinez, J. (2016). Developing ubiquitous sensor network platform using internet of things: Application in precision agriculture. Sensors, 16, 1141.
Jawad, H. M., Nordin, R., & Gharghan, S. K. (2017). Energy-efficient wireless sensor networks for precision agriculture: A review. Sensors, 17, 1781. https://doi.org/10.3390/s17081781 .
Sabri, N., Aljunid, S. A., Ahmad, R., Malek, M., Yahya, A., Kamaruddin, R., et al. (2012). Smart prolong fuzzy wireless sensor-actor network for agricultural application. Journal of Information Science and Engineering, 28(2), 295–316.
Ilie-Ablachim, D., Pătru, G. C., Florea, I. M., & Rosner, D. (2016). Monitoring device for culture substrate growth parameters for precision agriculture. In Proceedings of the 15th RoEduNet conference: Networking in education and research, Bucharest, Romania, 7–9 September 2016 (pp. 1–7).
Raza, U., Kulkarni, P., & Sooriyabandara, M. (2017). Low power wide area networks: An overview. IEEE Communications Surveys & Tutorials, 19(2), 855–873. https://doi.org/10.1109/COMST.2017.2652320 .
Chen, J., Hu, K., Wang, Q., Sun, Y., & Shi, Z. G. (2017). Narrow-band internet of things: Implementations and applications. IEEE Internet of Things Journal, 4(6), 2309–2314.
Bluetooth-technology, topology-options. Available online: https://www.bluetooth.com/bluetooth-technology/topology-options . Accessed 21 Oct 2018.
Wi-Fi Alliance. Available online: https://www.wi-fi.org/ . Accessed 21 Oct 2018.
IEEE 802.15.4v-2017. Available online: https://standards.ieee.org/standard/802_15_4v-2017.html . Accessed 21 Oct 2018.
Alliance, Lo Ra. (2015). White Paper: A Technical Overview of Lora and Lorawan. San Ramon: The LoRa Alliance.
NB-IoT wide range of opportunities. Available online: http://www.huawei.com/minisite/4-5g/img/NB-IOT.pdf . Accessed 21 Oct 2018.
Sigfox-the global communications service provider for IoT. Available online: http://www.sigfox.com . Accessed 21 Oct 2018.
Li, L., & Liu, G. (2006). Design of greenhouse environment monitoring and controlling system based on bluetooth technology. Transactions of the Chinese Society for Agricultural Machinery, 10, 97–100.
Hong, G. Z., & Hsieh, C. L. (2016). Application of integrated control strategy and bluetooth for irrigating romaine lettuce in greenhouse. IFAC Papers On-Line, 49, 381–386.
Kim, Y., Evans, R. G., & Iversen, W. M. (2008). Remote sensing and control of an irrigation system using a distributed wireless sensor network. IEEE Transactions on Instrumentation and Measurement, 57, 1379–1387.
Bartlett, A. C., Andales, A. A., Arabi, M., & Bauder, T. A. (2015). A smartphone APP to extend use of a cloud-based irrigation scheduling tool. Computers and Electronics in Agriculture, 111, 127–130.
Vellidis, G., Liakos, V., Andreis, J. H., Perry, C. D., Porter, W. M., Barnes, E. M., et al. (2016). Development and assessment of a smartphone application for irrigation scheduling in cotton. Computers and Electronics in Agriculture, 127, 249–259.
Yeng, C., Yuling, S., & Zhongyi, W. (2016). Connectivity of wireless sensor networks for plant growth in greenhouse. International Journal of Agricultural and Biological Engineering, 9, 89–98.
Cambra, C., Sendra, S., Jimenez, J. M., Lloret, J. (2017). Wireless network of sensors of low energy consumption in hydroponic agriculture. In Proceedings of the WSN & WLAN conference on JITEL, Valencia, Spain, 27–29 May 2017.
Alvino, A., & Marino, S. (2017). remote sensing for irrigation of horticultural crops. Horticulturae, 3, 40.
Voulodimos, Athanasios S., Patrikakis, Charalampos Z., Sideridis, Alexander B., Ntafis, Vasileios A., & Xylouri, Eftychia M. (2010). A complete farm management system based on animal identification using RFID technology. Computers and Electronics in Agriculture, 70, 380–388.
Ruiz, G. L., & Lunadei, L. (2011). The role of RFID in agriculture: Applications, limitations and challenges. Computers and Electronics in Agriculture, 79, 42–50.
Gabriel, V., Juan, F. D., Daniel, H. D. I., & Javier, B. (2017). Combining multi-agent systems and wireless sensor networks for monitoring crop irrigation. Sensors, 17, 1775. https://doi.org/10.3390/s17081775 .
Zhurong, C., Chao, H., Jingsheng, L., Shoubin, L. (2008). Protocol architecture for wireless body area network based on nRF24L01. In Proceedings of the 2008 IEEE international conference on automation and logistics (ICAL 2008), Qingdao, China, 1–3 September 2008 (pp. 3050–3054).
Mendez, G. R., Yunus, M. A. M, & Mukhopadhyay, S. C. (2012). A WiFi based smart wireless sensor network for an agricultural environment. In IEEE international instrumentation and measurement technology conference proceedings, Graz, Austria, 2012 (pp. 2640–2645).
Mohapatra, A. G., & Lenka, S. K. (2016). Neural network pattern classification and weather dependent fuzzy logic model for irrigation control in WSN based precision agriculture. Procedia Computer Science, 78, 499–506.
Nagarajan, G., & Minu, R. I. (2018). Wireless soil monitoring sensor for sprinkler irrigation automation system. Wireless Personal Communications, 98, 1835–1851. https://doi.org/10.1007/s11277-017-4948-y .
Jinbo, C., Yu, Z., & Lam, A. (2018). Research on monitoring platform of agricultural product circulation efficiency supported by cloud computing. Wireless Personal Communications. https://doi.org/10.1007/s11277-018-5392-3 .
Guo, J., Ma, X. M., Guo, W., & Sun, Z. F. (2013). Design of farmland environment remote monitoring system based on ZigBee network. Journal of Agricultural Mechanization Research, 11, 65–70.
Zhang, Q., Yang, X. L., Zhou, Y. M., Wang, L. R., & Guo, X. S. (2007). A wireless solution for greenhouse monitoring and control system based on ZigBee technology. Journal of Zhejiang University-Science A, 8, 1584–1587.
Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88, 297–307.
Huircán, J. I., Muñoz, C., Young, H., Von Dossow, L., Bustos, J., Vivallo, G., et al. (2010). Zigbee-based wireless sensor network localization for cattle monitoring in grazing fields. Computers and Electronics in Agriculture, 74(2), 258–264.
Nadimi, E. S., Jorgensen, R. N., Blanes-Vidal, V., & Christensen, S. (2012). Monitoring and classifying animal behavior using zigbee-based mobile ad hoc wireless sensor networks and artificial neural networks. Computers and Electronics in Agriculture, 82, 44–54.
Zhang, J., Hu, J., Huang, L., Zhang, Z., & Ma, Y. M. (2016). A portable farmland information collection system with multiple sensors. Sensors, 16, 1762. https://doi.org/10.3390/s16101762 .
Gutiérrez, J., Villa-Medina, J. F., Nieto-Garibay, A., & Porta-Gándara, M. Á. (2014). Automated irrigation system using a wireless sensor network and GPRS module. IEEE Transactions on Instrumentation and Measurement, 63, 166–176.
Navarro-Hellín, H., Torres-Sánchez, R., Soto-Valles, F., Albaladejo-Pérez, C., López-Riquelme, J., & Domingo-Miguel, R. (2015). A wireless sensors architecture for efficient irrigation water management. Agricultural Water Management, 151, 64–74.
Kontogiannis, S., Kokkonis, G., Ellinidou, S., & Valsamidis, S. (2017). Proposed fuzzy-NN algorithm with LoRa communication protocol for clustered irrigation systems. Future Internet, 9, 78. https://doi.org/10.3390/fi9040078 .