Study of TiN nanodisks with regard to application for Heat-Assisted Magnetic Recording
Tóm tắt
Từ khóa
Tài liệu tham khảo
S. A. Maier, and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. of Appl. Phys. 98(1), 011101 (2005).
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
J. B. Khurgin, and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37, 768-779 (2012).
J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Thermo-optic control of dielectric-loaded plasmonic Mach–Zehnder interferometers and directional coupler switches,” Nanotechnology 23(44), 444008 (2012).
J. Gosciniak, and S. I. Bozhevolnyi, “Performance of thermo-optical components based on dielectric-loaded surface plasmon polariton waveguides,” Sci. Rep. 3, 1803 (2013).
J. Gosciniak, T. Holmgaard, and S. I. Bozhevolnyi, “Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides,” J. of Lightwave Technology 29(10), 1473-1481 (2011).
J. Gosciniak, M. G. Nielsen, L. Markey, A. Dereux, S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded plasmonic waveguides with internal Wheatstone bridges,” Opt. Express 21(5), 5300-5308 (2013).
J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. G. de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98, 266802 (2007).
J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel droplet near-field transducer for a heat-assisted magnetic recording,” Nanophotonics, DOI 10.1515/nanoph-2015-0031, (2015).
J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Mach-Zehnder Interferometer waveguide as a light delivery system for a heat assisted magnetic recording,” IEEE Transactions on Magnetics, DOI 10.1109/TMAG.2015.2477434, (2015).
S. Bhargava, and E. Yablonovitch, “Lowering HAMR Near-Field Transducer Temperature via Inverse Electromagnetic Design,” IEEE Trans. On Magn. 51(4), 3100407-3100407 (2015).
P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795-808 (2010).
C. Rhodes, S. Franzen, J.-P. Mari,. M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).
M J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE Journal of Selected Topics in Quantum Electronics 19, 4601907 (2013).
A. P. Hibbins, and J. R. Sambles, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Modern Opt. 45 (10), 2051-2062 (1998).
M. B. Cortie, J. Giddings, and A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures,” Nanotechnology 21, 115201 (2010).
G. V. Naik, V. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264-3294 (2013).
U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A.V. Kildishev, V. M. Shalaev, A. Boltasseva, “Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles,” Nano Lett. 13 (12), 6078-6083 (2013).
U. Guler, A. Kildishev, A. Boltasseva, and V. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discussions 178, 71-86 (2015).
P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 8, 3128-3154 (2015).
Ch. M. Zgrabik, and E. L. Hu, “Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications,” Opt. Mat. Express 5(12), 2786-2797 (2015).
S. Bagheri, Ch. M. Zgrabik, T. Gissibl, A. Tittl, F. Sterl, R. Walter, S. De Zuani, A. Berrier, T. Stauden, G. Richter, E. L. Hu, and H. Giessen, “Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography,” Opt. Mat. Express 5(11), 2625-2633 (2015).
A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749-758 (2012).
F. J. G. de Abajo, “Graphene Plasmonics: Challenges and Opportunities,” ACS Photonics 1, 135-152 (2014).
J. Gosciniak, and D. T. H. Tan, “Theoretical investigation of graphene-based photonic modulators,” Scientific Reports 3, 1897 (2013).
J. Gosciniak, D. T. H. Tan, and B. Corbett, “Enhanced performance of graphene-based electro-absorption waveguide modulators by engineered optical modes,” J. of Physics D: Applied Physics 48(23), 235101 (2015).
F. Strohfeldt, A. Tittl, M. Schaferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium Hydride Nanoantennas for Active Plasmonics,” Nano Lett. 14, 1140-1147 (2014).
F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as Novel Material for Active Plasmonics in the Visible Wavelength Range,” Nano Lett. doi:10.1021/acs.nanolett.5b03029, (2015).
J. Gosciniak, J. Justice, U. Khan, and B. Corbet, “Ceramic transducer for data storage applications,” ACS Nano (2016). (under review)
W. A. Challener, Ch. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y. –T. Hsia, R. E. Rottmayer, M. A. Seigler and E. C. Gage, “Heat-assisted megnetic recording by a near-field transducer with efficient optical energy transfer,” Nature Photon. 3, 220-224 (2009).
B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. –L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nature Photon. 4, 484-488 (2010).
N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141-155 (2014).
