Study of Ozone Layer Variability near St. Petersburg on the Basis of SBUV Satellite Measurements and Numerical Simulation (2000–2014)

Izvestiya, Atmospheric and Oceanic Physics - Tập 53 - Trang 911-917 - 2018
Y. A. Virolainen1, Y. M. Timofeyev2, S. P. Smyshlyaev3, M. A. Motsakov3, O. Kirner4
1Saint Petersburg State University, St. Petersburg, Russia
2Saint-Petersburg State University, St.Petersburg, Russia
3Russian State Hydrometeorological University, St. Petersburg, Russia
4Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany

Tóm tắt

A comparison between the numerical simulation results of ozone fields with different experimental data makes it possible to estimate the quality of models for their further use in reliable forecasts of ozone layer evolution. We analyze time series of satellite (SBUV) measurements of the total ozone column (TOC) and the ozone partial columns in two atmospheric layers (0–25 and 25–60 km) and compare them with the results of numerical simulation in the chemistry transport model (CTM) for the low and middle atmosphere and the chemistry climate model EMAC. The daily and monthly average ozone values, short-term periods of ozone depletion, and long-term trends of ozone columns are considered; all data sets relate to St. Petersburg and the period between 2000 and 2014. The statistical parameters (means, standard deviations, variations, medians, asymmetry parameter, etc.) of the ozone time series are quite similar for all datasets. However, the EMAC model systematically underestimates the ozone columns in all layers considered. The corresponding differences between satellite measurements and EMAC numerical simulations are (5 ± 5)% and (7 ± 7)% and (1 ± 4)% for the ozone column in the 0–25 and 25–60 km layers, respectively. The correspondent differences between SBUV measurements and CTM results amount to (0 ± 7)%, (1 ± 9)%, and (–2 ± 8)%. Both models describe the sudden episodes of the ozone minimum well, but the EMAC accuracy is much higher than that of the CTM, which often underestimates the ozone minima. Assessments of the long-term linear trends show that they are close to zero for all datasets for the period under study.

Tài liệu tham khảo

Bhartia, P.K., McPeters, R.D., Flynn, L.E., Taylor, S., Kramarova, N.A., Frith, S., Fisher, B., and DeLand, M., Solar backscatter UV (SBUV) total ozone and profile algorithm, Atmos. Meas. Tech., 2013, vol. 6, pp. 2533–2548. Egorova, T., Rozanov, E., Zubov, V., Manzini, E., Schmutz, W., and Peter, T., Chemistry–climate model SOCOL: A validation of the present-day climatology, Atmos. Chem. Phys., 2005, vol. 5, pp. 1557–1576. Eyring, V., Harris, N.R.P., Rex, M., Shepherd, T.G., Fahey, D.W., Amanatidis, G.T., Austin, J., Chipperfield, M.P., Dameris, M., De, F., Forster, P.M., Gettelman, A., Graf, H.F., Nagashima, T., Newman, P.A., Pawson, S., Prather, M.J., Pyle, J.A., Salawitch, R.J., Santer, B.D., and Waugh, D.W., A strategy for process-oriented validation of coupled chemistry–climate models, Bull. Am. Meteorol. Soc., 2005, vol. 86, no. 8, pp. 1117–1133. Eyring, V., Butchart, N., Waugh, D.W., Akiyoshi, H., Austin, J., Bekki, S., Bodeker, G.E., Boville, B.A., Bruehl, C., Chipperfield, M.P., Cordero, E., Dameris, M., Deushi, M., Fioletov, V.E., Frith, S.M., Garcia, R.R., Gettelman, A., Giorgetta, M.A., Grewe, V., Jourdain, L., Kinnison, D.E., Mancini, E., Manzini, E., Marchand, M., Marsh, D.R., Nagashima, T., Newman, P.A., Nielsen, J.E., Pawson, S., Pitari, G., Plummer, D.A., Rozanov, E., Schraner, M., Shepherd, T.G., Shibata, K., Stolarski, R.S., Struthers, H., Tian, W., and Yoshiki, M., Assessment of temperature, trace species, and ozone in chemistry climate model simulations of the recent past, J. Geophys. Res., 2006, vol. 111, D2230. Eyring, V., Righi, M., Lauer, A., Evaldsson, M., Wenzel, S., Jones, C., Anav, A., Andrews, O., Cionni, I., Davin, E.L., Deser, C., Ehbrecht, C., Friedlingstein, P., Gleckler, P., Gottschaldt, K-D., Hagemann, S., Juckes,M., Kindermann, S., Krasting, J., Kunert, D., Levine, R., Loew, A., Makela, J., Martin, G., Mason, E., Phillips, A.S., Read, S., Rio, C., Roehrig, R., Senftleben, D., Sterl, A., van Ulft, L.H., Walton, J., Wang, S., and Williams, K.D., ESMValTool (v1.0)—a community diagnostic and performance metrics tool for routine evaluation of earth system models in CMIP, Geosci. Model Dev., 2016, vol. 8, pp. 1747–1802. Galin, V.Ya., Smyshlyaev, S.P., and Volodin, E.M., Combined chemistry–climate model of the atmosphere, Izv., Atmos. Ocean. Phys., 2007, vol. 43, no. 4, pp. 399–412. Harris, N.R.P., Hassler, B., Tummon, F., Bodeker, G.E., Hubert, D., Petropavlovskikh, I., Steinbrecht, W., Anderson, J., Bhartia, P.K., Boone, C.D., Bourassa, A., Davis, S.M., Degenstein, D., Delcloo, A., Frith, S.M., Froidevaux, L., Godin-Beekmann, S., Jones, N., Kurylo, M.J., Kyrölä, E., Laine, M., Leblanc, S.T., Lambert, J-C., Liley, B., Mahieu, E., Maycock, A., de Mazière, M., Parrish, A., Querel, R., Rosenlof, K.H., Roth, C., Sioris, C., Staehelin, J., Stolarski, R.S., Stubi, R., Tamminen, J., Vigouroux, C., Walker, K.A., Wang, H.J., Wild, J., and Zawodny, J.M., Past changes in the vertical distribution of ozone. Pt. 3: Analysis and interpretation of trends, Atmos. Chem. Phys., 2015, vol. 15, pp. 9965–9982. Jöckel, P., Tost, H., Pozzer, A., Brühl, C., Buchholz, J., Ganzeveld, L., Hoor, P., Kerkweg, A., Lawrence, M.G., Sander, R., Steil, B., Stiller, G., Tanarhte, M., Taraborrelli, D., van Aardenne, J., and Lelieveld, J., The atmospheric chemistry general circulation model ECHAM5/MESSY1: Consistent simulation of ozone from the surface to the mesosphere, Atmos. Chem. Phys., 2006, vol. 6, pp. 5067–5104. Jöckel, P., Tost, H., Pozzer, A., Kunze, M., Kirner, O., Brenninkmeijer, C.A.M., Brinkop, S., Cai, D.S., Dyroff, C., Eckstein, J., Frank, F., Garny, H., Gottschaldt, K-D., Graf, P., Grewe, V., Kerkweg, A., Kern, B., Matthes, S., Mertens, M., Meul, S., Neumaier, M., Nutzel, M., Oberländer-Hayn, S., Ruhnke, R., Runde, T., Sander, R., Scharffe, D., and Zahn, A., Earth system chemistry integrated modelling (ESCiMO) with the modular earth submodel system (MESSy) v. 2.51, Geosci. Model Dev., 2016, vol. 9, pp. 1153–1200. Pendlebury, D., Plummer, D., Scinocca, J., Sheese, P., Strong, K., Walker, K., and Degenstein, D., Comparison of the CMAM30 data set with ACE-FTS and OSIRIS: Polar regions, Atmos. Chem. Phys., 2015, vol. 15, pp. 12465–12485. Polyakov, A.V., Timofeev, Yu. M., and Uspenskii, A.B., Possibilities for determining temperature and emissivity of the land surface from data of satellite IR sounders with high spectral resolution (IRFS-2), Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 9, pp. 1092–1096. Rienecker, M.M., Suarez, M.J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M.G., Schubert, S.D., Takacs, L., Kim, G-K., Bloom, S., Chen, J., Collins, D., Conaty, A., Silva, A., Gu, W., Joiner, J., Koster, R.D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C.R., Reichle, R., Robertson, F.R., Ruddick, A.G., Sienkiewicz, M., and Woollen, J., MERRA: NASA’s modern-era retrospective analysis for research and applications, J. Clim., 2011, vol. 24, pp. 3624–3648. Righi, M., Eyring, V., Gottschaldt, K-D., Klinger, C., Frank, F., Jockel, P., and Cionni, I., Quantitative evaluation of ozone and selected climate parameters in a set of EMAC simulations, Geosci. Model Dev., 2015, vol. 8, pp. 733–768. Smyshlyaev, S.P., Galin, V.Ya., Zimenko, P.A., and Kudryavtsev, A.P., A model study of the atmospheric ozone sensitivity to the solar flux spectral variations caused by solar activity, Russ. Meteorol. Hydrol., 2005, no. 8, pp. 17–25. Smyshlyaev, S.P., Galin, V.Ya., Atlaskin, E.M., and Blakitnaya, P.A., Simulation of the indirect impact that the 11-year solar cycle has on the gas composition of the atmosphere, Izv., Atmos. Ocean. Phys., 2010a, vol. 46, no. 5, pp. 623–634. Smyshlyaev S.P., Mareev E.A., Galin V.Ya. Simulation of the impact of thunderstorm activity on atmospheric gas composition, Izv., Atmos. Ocean. Phys., 2010b, vol. 46, no. 4, pp. 451–467. Smyshlyaev, S.P., Virolainen, Ya.A., Motsakov, M.A., Timofeev, Yu.M., Poberovskii, A.V., and Polyakov, A.V., Interannual and seasonal variations in ozone in different atmospheric layers over St. Petersburg based on observational data and numerical modeling, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 3, pp. 301–315. Uspensky, A.B., Trotsenko, A.N., Rublev, A.N., and Romanov, S.V., Determination of the total content of atmospheric trace gases with the help of IASI IRsounder. II. Analysis of the accuracy of sounding results, Issled. Zemli Kosmosa, 1998, no. 3, pp. 79–86. Virolainen, Ya.A., Timofeev, Yu.M., Poberovskii, A.V., Intercomparison of satellite and ground-based ozone total column measurements, Izv., Atmos. Ocean. Phys., 2013, vol. 49, no. 9, pp. 993–1001. Virolainen, Ya.A., Timofeev, Yu.M., Polyakov, A.V., Ionov, D.V., Kirner, O., Poberovskii, A.V., and Imkhasin, Kh., Comparing data obtained from ground-based measurements of the total contents of O3, HNO3,HCl, and NO2 and from their numerical simulation, Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 1, pp. 57–65. Wauben, W.M.F., Fortuin, J.P.F., van Velthoven, P.F.J., and Kelder, H.M., Comparison of modeled ozone distributions with sonde and satellite observations, J. Geophys. Res., 1998, vol. 103, no. D3, pp. 3511–3530. WMO, Scientific Assessment of Ozone Depletion, Global Ozone Research and Monitoring Project, Rep. 47, Geneva: WMO, 2003. WMO, Scientific Assessment of Ozone Depletion, Global Ozone Research and Monitoring Project, Rep. 50, Geneva: WMO, 2007.