Study of Nanoscale Profiling Modes of GaAs Epitaxial Structures by Focused Ion Beams
Tóm tắt
The nanoscale profiling modes of epitaxial GaAs layers are experimentally studied through focused ion beams (FIB). The regularities of the influence of ion current and single FIB exposure time on the geometric characteristics of the forming nanosized profile and the etching rate of the surface of GaAs epitaxial layers are determined. It is established that, within the range of FIB modes used, the rate of normal etching of GaAs(001) is on average an order of magnitude lower than the rate of lateral etching. It is shown that the FIB formation of structures with sizes of up to 100 nm atop the GaAs epitaxial layers necessitates the use of ion currents of up to 102 pA and single exposure times at a point from 10 to 100 μs. The results of the present work can be used in the development of technological processes for manufacturing promising elements of nanoelectronics and nanophotonics based on a combination of the FIB method and various types of growth methods.
Tài liệu tham khảo
V. A. Gaisler, A. V. Gaisler, A. S. Jaroshevich, I. A. Derebezov, M. M. Kachanova, Yu. A. Zhivodkov, T. A. Gavrilova, A. S. Medvedev, L. A. Nenasheva, K. V. Grachev, V. K. Sandyrev, A. S. Kozhukhov, V. M. Shayakhmetov, A. K. Kalagin, A. K. Bakarov, et al., “Efficient single-photon emitters based on Bragg microcavities containing selectively positioned InAs quantum dots,” Semiconductor. 49, 33 (2015).
M. Kianpour, R. Sabbaghi-Nadooshan, and K. Navi, “A novel design of 8-bit adder-subtractor by quantumdot cellular automata,” J. Comput. Syst. Sci. 80, 1404–1414 (2014).
M. J. Karimi, G. Rezaei, and M. Nazari, “Linear and nonlinear optical properties of multilayered spherical quantum dots: effects of geometrical size, hydrogenic impurity, hydrostatic pressure and temperature,” J. Lumin. 145, 55–60 (2014).
M. Shahazadeh and M. Saebaeian, “Wetting layerassisted modification of in-plane-polarized transitions in strain-free GaAs/AlGaAs quantum dots,” Superlatt. Microstruct. 75, 514–522 (2014).
E. Ramos, R. Franco, J. Silva-Valencia, and M. S. Figueira, “Thermoelectric transport properties of a T-coupled quantum dot: atomic approach for the finite U case,” Phys. E (Amsterdam, Neth.) 64, 39–44 (2014).
J. Alaeddin Sayahian and G. Rezaei, “Electromagnetically induced transparency in a twi-dimensional quantum pseudo-dot system: effects of geometrical size and external magnetic field,” Phys. B (Amsterdam, Neth.) 456, 103–107 (2015).
O. A. Ageev, M. S. Solodovnik, S. V. Balakirev, I. A. Mikhaylin, and M. M. Eremenko, “Effect of GaAs native oxide upon the surface morphology during GaAs MBE growth,” J. Phys.: Conf. Ser. 741, 012012 (2016).
O. A. Ageev, S. V. Balakirev, M. S. Solodovnik, and M.M. Eremenko, “Effect of interaction in the Ga–As–O system on the morphology of a GaAs surface during molecular-beam epitaxy,” Phys. Solid State 58, 1045–1052 (2016).
V. S. Klimin, R. V. Tominov, A. V. Eskov, S. Y. Krasnoborodko, and O. A. Ageev, “The influence of the chemical and physical component of the plasma etching of the surface of gallium arsenide on the etching rate in the chloride plasma of the combined discharge,” J. Phys: Conf. Ser. 917, 092005 (2017).
O. A. Ageev, V. S. Klimin, M. S. Solodovnik, A. V. Eskov, and S. Y. Krasnoborodko, “The study of influence of the gas flow rate to etched layer thickness, and roughness of the anisotropy field of gallium arsenide is etched in the plasma chemical etching process,” J. Phys.: Conf. Ser. 741, 012178 (2016).
P. Atkinson, O. G. Shmidt, S. P. Bremner, and D. A. Ritchie, “Formation and ordering of epitaxial quantum dots,” C. R. Phys. 9, 788–803 (2008).
N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, P. S. Kop’ev, Zh. I. Alferov, and D. Bimberg, “Quantum dot heterostructures: fabrication, properties, lasers,” Semiconductor. 32, 343 (1998).
G. E. Cirlin, N. V. Sibirev, C. Sartel, and J. C. Harmand, “Lateral ordering of GaAs nanowhiskers on GaAs(111)As and GaAs(110) surfaces during molecular beam epitaxy,” Semiconductor. 42, 710 (2008).
Z. M. Wang, Self-Assembled Quantum Dots (Springer, New York, 2008).
J. C. Lin, P. W. Fry, R. A. Hogg, and M. S. Skolnick, “The control of size and area density of InAs selfassembled quantum dots in selective area molecular beam epitaxy on GaAs (001) surface,” Microelectron. J. 37, 1505–1510 (2006).
B. C. Lee, S. D. Lin, and C. P. Lee, “Selective growth of single InAs quantum dots using strain engineering,” Appl. Phys. Lett. 2, 326–328 (2002).
J. C. Lin, R. Hogg, P. Fry, M. Hopkinson, I. Ross, A. Cullis, R. Kolodka, A. Tartakovskii, and M. Skolnick, “Effect of GaAs polycrystal on the size areal density of InAs quantum dots in selective area molecular beam epitaxy,” J. Cryst. Growth 297, 38–43 (2006).
A. R. Pratt and R. L. Williams, “Indium migration control on patterned substrates for optoelectronic device applications,” Appl. Phys. Lett. 65, 1009–1011 (1994).
M. Zander, J. Nishinaga, K. Iga, and Y. Horikoshi, “Area selective epitaxy of InAs on GaAs(001) and GaAs(111)A by migration enhanced epitaxy,” J. Cryst. Growth 323, 9–12 (2011).
V. C. Elarde, T. S. Yeoh, R. Rangarajan, and J. J. Coleman, “Controlled fabrication of InGaAs quantum dots by selective area epitaxy MOCVD growth,” J. Cryst. Growth 272, 148–153 (2004).
K. Haraguchi, K. Hiruma, T. Katsuyama, and T. Shimada, “Current-voltage characteristics of GaAs nanowhiskers,” Curr. Appl. Phys. 6, 10–13 (2006).
P. Atkinson and O. G. Schmidt, “Gallium-assisted deoxidation of patterned substrates for site-controlled growth of InAs quantum dots,” J. Cryst. Growth 311, 1815–1818 (2009).
B. Bhushan, Scanning Probe Microscopy in Nanoscience and Nanotechnology (Springer, Berlin, 2010).
O. A. Ageev, A. S. Kolomiytsev, and B. G. Konoplev, “Formation of nanosize structures on a silicon substrate by method of focused ion beams,” Semiconductor. 45, 1709 (2011).
O. A. Ageev, A. M. Alekseev, A. V. Vnukova, A. L. Gromov, A. S. Kolomiytsev, B. G. Konoplev, and S. A. Lisitsyn, “Studying the resolving power of nanosized profiling using focused ion beams,” Nanotechnol. Russ. 9, 26–30 (2014).
O. A. Ageev, A. M. Alekseev, A. V. Vnukova, A. L. Gromov, A. S. Kolomiytsev, and B. G. Konoplev, “Modeling of the substrate topography upon nanosized profiling by focused ion beams,” Nanotechnol. Russ. 9, 31–37 (2014).
O. A. Ageev, S. V. Balakirev, A. V. Bykov, E. Yu. Gusev, A. A. Fedotov, J. Y. Jityaeva, O. I. Il’in, M. V. Il’ina, A. S. Kolomiytsev, B. G. Konoplev, S. U. Krasnoborodko, V. V. Polyakov, V. A. Smirnov, M. S. Solodovnik, and E. G. Zamburg, “Development of new metamaterials for advanced element base of micro-and nanoelectronics, and microsystem devices,” in Advanced Materials. Manufacturing, Physics, Mechanics and Applications, Ed. by I. A. Parinov, Sh.-H. Chang, and Yu. Topolov (Springer, Switzerland, 2016), pp. 563–580.
V. I. Avilov, O. A. Ageev, A. S. Kolomiytsev, B. G. Konoplev, V. A. Smirnov, and O. G. Tsukanova, “Formation of a memristor matrix based on titanium oxide and investigation by probe-nanotechnology methods,” Semiconductors 48, 1757–1762 (2014).
A. V. Bessonova, V. K. Nevolin, A. V. Romashkin, and K. A. Tsarik, “Regularities in the formation of semiconductor nanostructures with the help of a focused ion beam,” Izv. Vyssh. Uchebn. Zaved., Elektron., No. 6, 27–32 (2011).
I. I. Bobrinetskii, A. V. Volkova, A. A. Zaitsev, V. K. Nevolin, K. A. Tsarik, and A. A. Chudinov, “Formation of silicon nanostructures by plasma etching through a mask created by a focused beam Ga+ ions,” Izv. Vyssh. Uchebn. Zaved., Elektron., No. 2, 43–49 (2014).
“Creation of templates for the formation of elements of field emission nanoelectronics by the FIP method,” State Registration Certificate of Computer Program No. 2015610515 (2015).
M. A. Kuznetsova, “Possibilities and restrictions nano ionic-radial technologies,” Biotekhnosfera, Nos. 1–2 (13–14), 46–53 (2011).