Study of Hydrolysis Kinetic of New Laser Material [anti-B18H22]

Russian Journal of Inorganic Chemistry - Tập 64 - Trang 1359-1364 - 2019
Chun-hua Tan1, Bao-kai Zhang1, Jie Chen1, Lin-na Zhang1, Xu-guang Huang1, Hong-yun Meng1
1Laboratory of Nanophotonic Functional Materials and Devices, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China

Tóm tắt

[anti-B18H22] is a potential blue laser material. In order to study the stability of [anti-B18H22] in aqueous solution, the hydrolytic reaction kinetic of [anti-B18H22] at various pH values and temperatures was studied by fluorescence spectroscopy. The results showed that [anti-B18H22] hydrolysis rate was accelerated by increasing temperature, and the trend showed that [anti-B18H22] hydrolyzed faster in low pH than in high pH solutions at the same temperature. The hydrolysis of [anti-B18H22] solution is second-order reaction at lower temperature (300.15–323.15 K), the activation energy is 52.37 kJ mol–1 and pre-exponential factor (A) is 7.9 × 1010. The work described here is significant for future studies of the properties of [anti-B18H22] in aqueous solution.

Tài liệu tham khảo

M. F. Hawthorne, Comment. Inorg. Chem. 31, 153 (2010). https://doi.org/10.1080/02603594.2010.520258 M. F. Hawthorne, A. Maderna, and R. A. Moore, Abstr. Papers Am. Chem. Soc. 217, U46 (1999). U. B. Demirci, Int. J. Hydr. En. 42, 9978 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.154 X. B. Wang, L. H. Xie, and K. W. Huang, Chem. Commun. 51, 7610 (2015). https://doi.org/10.1039/c5cc00193e B. R. S. Hansen, M. Paskevicius, H. W. Li, et al., Coord. Chem. Rev. 323, 60 (2016). https://doi.org/10.1016/j.ccr.2015.12.003 J. Alipour, A. M. Shoushtari, and A. Kaflou, J. Mater. Sci. 50, 3110 (2015). https://doi.org/10.1007/s10853-015-8871-x L. Cerdan, J. Braborec, I. Garcia Moreno, et al., Nat. Commun. 6, 1 (2015). https://doi.org/10.1038/ncomms6958 M. G. S. Londesborough, J. Dolanský, T. Jelínek, et al., Dalton Trans. 47, 1709 (2018). https://doi.org/10.1039/c7dt03823b Z. Kolska, J. Matousek, and P. Capkova, Appl. Clay. Sci. 118, 295 (2015). https://doi.org/10.1016/j.clay.2015.10.009 R. N. Grimes, J. Chem. Ed. 81, 657(2004). https://doi.org/10.1021/ed081p657 A. Grachame, and K. F. Aguey-Zinsou, Inorganics 6, 106 (2018). https://doi.org/10.3390/inorganics6040106 I. B. Sivaev, and V. I Bregadze, Polyhedral Boron Hydrides in Use: Current Status and Perspectives (Nova Science, Hauppauge, 2009). N. S. Hosmane, Boron Science: New Technologies and Applications (CRC Press, Boca Raton, 2012). E. Hey-Hawkins, and C. Viñas Teixidor, Boron-Based Compounds: Potential and Emerging Applications in Medicine (Wiley, Hoboken, 2018). N. S. Hosmane, and R. Eagling, Handbook of Boron Science with Applications in Organometallics, Catalysis, Materials and Medicine (Europe, London, 2018). M. G. S. Londesborough, D. Hnyk, J. Bould, et al., Inorg. Chem. 51, 1471 (2012). https://doi.org/10.1021/ic201726k V. Saurí, J. M. Oliva, D. Hnyk, et al., Inorg. Chem. 52, 9266 (2013). https://doi.org/10.1021/ic4004559 E. A. Malinina, V. V. Avdeeva, L. V. Goeva, et al., Russ. J. Inorg. Chem. 56, 687 (2011). https://doi.org/10.1134/s0036023611050160 E. A. Malinina, V. V. Avdeeva, L. V. Goeva, et al., Russ. J. Inorg. Chem. 55, 2148 (2010). https://doi.org/10.1134/s0036023610140032 V. V. Avdeeva, E. A. Malinina, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 62, 1673 (2017). https://doi.org/10.1134/s0036023617130022 R. Sarkar, and S. Mahapatra, J. Chem. Phys. 147, 194305 (2017). https://doi.org/10.1063/1.4997217 K. Yu. Zhizhin, A. P. Zhdanov, N. T. Kuznetsov, Russ. J. Inorg. Chem. 55, 2089 (2010). https://doi.org/10.1134/s0036023610140019 M. G. S. Londesborough, J. Dolanský, and L. Cerdán, Adv. Opt. Mater. 5, 1600694 (2017). https://doi.org/10.1002/adom.201600694 J. W. Taylor, U. Englich, A. K. RuhlandtSenge, et al., Organometallics 21, 3054 (2002). https://doi.org/10.1021/om020139d B. M. Graybill, J. K. Ruff, and M. F. Hawthorne, J. Am. Chem. Soc. 83, 2669 (1961). https://doi.org/10.1021/ja01473a017 Y. Li, and L. G. Sneddon, Inorg. Chem. 45, 470 (2006). https://doi.org/10.1021/ic051712z