Study of EPR parameters and defect structure for two tetragonal impurity centers in MgO:Cr3+ and MgO:Mn4+ crystals

Applied Magnetic Resonance - Tập 35 - Trang 503-510 - 2009
Xiao-Xuan Wu1, W. Fang2, W. -L. Feng2,3, W. -C. Zheng2,4
1Department of Physics, Civil Aviation Flight University of China, Guanghan, People’s Republic of China
2Department of Material Science, Sichuan University, Chengdu, People’s Republic of China
3Department of Applied Physics, Chongqing Institute of Technology, Chongqing, People’s Republic of China
4International Center for Materials Physics, Chinese Academy of Sciences, Shenyang, People’s Republic of China

Tóm tắt

The electron paramagnetic resonance (EPR) parameters (g-factors g ‖, g ⊥ and zero-field splitting D) of two tetragonal 3d3 impurity centers M3d-VMg and M3d-Li+ (where M3d = Cr3+ or Mn4+, VMg is the Mg2+ vacancy) in M3d-doped MgO crystals are calculated from the high-order perturbation formulas including both the crystal-field (CF) and the charge-transfer (CT) mechanisms for 3d3 ions in the tetragonal symmetry. The calculated results are in reasonable agreement with the experimental values. From the calculations, it can be found that the relative importance of the CT mechanism for EPR parameters increases with increasing valence state of the 3d3 ion. So, for the high-valence 3d n ions in crystals, a reasonable explanation of EPR parameters should take into account both CF and CT mechanisms. The defect structures (characterized by the displacement ΔR of O2− in the intervening M3d and VMg or Li+ at the Mg2+ site) for these tetragonal impurity centers are obtained from the calculations. The results are consistent with the expectations based on the electrostatic interactions.

Tài liệu tham khảo

Morrision, C.A.: Crystal Fields for Transition-Metal Ions in Laser Host Materials. Springer, Berlin (1992) Boldu, J.L., Gleason, R.J., Georgiev, M.: Phys. Rev. B 32, 7043–7047 (1985) Davies, J.J., Smith, S.R.P., Wertz, J.E.: Phys. Rev. 178, 608–612 (1969) Rubio, J., Chen, Y., Abraham, M.M.: J. Chem. Phys. 64, 4804–4806 (1976) Groh, D.J., Pandey, R., Recio, J.M.: Phys. Rev. B 50, 14860–14866 (1994) Lever, A.B.P.: Inorganic Electronic Spectroscopy. Elsevier, Amsterdam (1984) Zheng, W.C., Wu, X.X.: J. Phys. Chem. Solids 66, 1701–1704 (2005) Macfarlane, R.M.: Phys. Rev. B 1, 989–1004 (1970) Macfarlane, R.M.: J. Chem. Phys. 47, 2066–2073 (1967) Griffith, J.S.: The Theory of Transition-Metal Ions. Cambridge University Press, London (1964) Du, M.L., Rudowicz, C.: Phys. Rev. B 46, 8974–8977 (1992) Clementi, E., Raimondi, D.L.: J. Chem. Phys. 38, 2686–2689 (1963) Clementi, E., Raimondi, D.L., Reinhardt, W.P.: J. Chem. Phys. 47, 1300–1307 (1967) Zheng, W.C.: Physica B 215, 255–259 (1995) Weast, R.C. (ed.): CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton, Fla. (1989) Stokowski, S.E., Schawlow, A.L.: Phys. Rev. 178, 457–464 (1969) Bryknar, Z., Trepakov, V., Potucek, Z., Tastrabik, L.: J. Lumin. 87–89, 605–607 (2000) Wu, S.Y., Dong, H.N.: Z. Naturforsch. A 59, 689–693 (2004) Tippins, H.H.: Phys. Rev. B 1, 126–135 (1970) Yamase, T., Kobayashi, T., Kettel, S.F.A.: J. Electrochem. Soc. 143, 1678–1680 (1996) Blasse, G., de Korte, P.H.M.: J. Inorg. Nucl. Chem. 43, 1505–1506 (1981) Newman, D.J., Ng, B.: Rep. Prog. Phys. 52, 699–763 (1989) Yu, W.L.: J. Phys.: Condens. Matter 6, 5105–5112 (1994) Zheng, W.C., Zhou, Q., Wu, X.X., Mei, Y.: Spectrochim. Acta A 61, 1243–1246 (2005) Yeom, T.H., Choh, S.H., Du, M.L., Tang, M.S.: Phys. Rev. B 53, 3415–3421 (1996) Rudowicz, C., Zhou, Y.Y.: J. Magn. Magn. Mater. 111, 153–163 (1992)