Studies on crystal structure, morphology, optical and photoluminescence properties of flake-like Sb doped Y2O3 nanostructures
Tóm tắt
Từ khóa
Tài liệu tham khảo
R. Krsmanović, Ž Antić, B. Bártová, M.D. Dramićanin, J. Alloy. Comp. (2010). https://doi.org/10.1016/j.jallcom.2010.06.033
R.M. Krsmanović, Ž Antić, M.G. Nikolić, M. Mitrić, M.D. Dramićanin, Ceram. Int. (2011). https://doi.org/10.1016/j.ceramint.2010.09.040
R. Schmechel, M. Kennedy, H. von Seggem, H. Winkler, M. Kolbe, R. Fisher, L. Xaomao, A. Benker, M. Winterer, H. Hahn, J. Appl. Phys. (2001). https://doi.org/10.1063/1.1333033
M.Z. Su, W. Yhao, in Spectroscopic Properties of Rare Earths in Optical Materials, ed. by L. Guokui, J. Bernard (Springer, Berlin, 2005), p. 521
F. Vetrone, J.C. Boyer, J.A. Capobianco, A. Speghini, M. Bettinelli, Nanotechnology (2004). https://doi.org/10.1088/0957-4484/15/1/015
R.M. Krsmanović, Ž Antić, B. Bártová, M.G. Brik, M.D. Dramićanin, Ceram. Int. (2012). https://doi.org/10.1016/j.ceramint.2011.09.004
J. Li, Y. Zhang, G. Hong, Y. Yu, J. Rare Earths (2008). https://doi.org/10.1016/S1002-0721(08)60116-7
D.L. Phan, M.H. Phan, N. Vu, T.K. Anh, S.C. Yu, Phys. Status Solidi (2004). https://doi.org/10.1002/pssa.200406825
Ž. Antić, R. Krsmanović, M. Wojtowicz, E. Zych, B. Bártová, M.D. Dramićanin, Opt. Mater. (2010). https://doi.org/10.1016/j.optmat.2010.05.022
Ž. Antić, R. Krsmanović, V. Ðorđević, T. Dramićanin, M.D. Dramićanin, Acta Phys. Pol. A (2010). https://doi.org/10.12693/APhysPolA.116.622
W. De Gejihu, J. Qin, J. Zhang, Y. Zhang, C. Wang, Y.C. Cao, J. Lumin. (2006). https://doi.org/10.1016/j.jlumin.2005.12.041
S. Zeng, K. Tang, T. Li, Z. Liang, J. Colloid, Interface Sci. (2007). https://doi.org/10.1016/j.jcis.2007.08.034
J.R. Jayaramaiah, K.R. Nagabhushana, B.N. Lakshminarasappa, J. Anal. Appl. Pyrolysis (2017). https://doi.org/10.1016/j.jaap.2016.11.023
J. Yang, Z. Quan, D. Kong, X. Liu, J. Lin, Cryst. Growth Des. (2007). https://doi.org/10.1021/cg060717j
L. Mancic, V. Lojpur, B.A. Marinkovic, M.H. de Pinho Mauricio, M.D. Dramicanin, O. Milosevic, Adv. Powder. Technol. (2014). https://doi.org/10.1016/j.apt.2014.03.015
X. Li, Q. Li, Z. Xia, L. Wang, W. Yan, J. Wang, R.I. Boughton, Cryst. Growth Des. (2006). https://doi.org/10.1021/cg0600400
J. Zhou, Y. Yang, L. Wang, X. Zhang, L. Wang, Opt. Laser. Technol. (2019). https://doi.org/10.1016/j.optlastec.2018.12.032
J.B. Prasanna Kumar, G. Ramgopal, Y.S. Vidya, K.S. Anantharaju, B. Daruka Prasad, S.C. Sharma, S.C. Prashantha, H.B. Premkumar, H. Nagabhushana, Spectrochim. Acta A (2015). https://doi.org/10.1016/j.saa.2015.01.055
A. Jain, P. Sengar, G.A. Hirata, J. Phys. D Appl. Phys. (2018). https://doi.org/10.1088/1361-6463/aaca49/meta
G. Rajakumar, L. Mao, T. Bao, W. Wen, S. Wang, T. Gomathi, N. Gnanasundaram, M. Rebezov, M.A. Shariati, I.M. Chung, M. Thiruvengadam, X. Zhang, Appl. Sci. (2021). https://doi.org/10.3390/app11052172
D. Nunes, A. Pimentel, M. Matias, T. Freire, A. Araújo, F. Silva, P. Gaspar, S. Garcia, P.A. Carvalho, E. Fortunato, R. Martins, Nanomaterials (Basel, Switzerland) (2019). https://doi.org/10.3390/nano9020234
J. Hoang, T.T. Van, M. Sawkar-Mathur, B. Hoex, M.C.M. Van de Sanden, W.M.M. Kessels, R. Ostroumov, K.L. Wang, J.R. Bargar, J.P. Chang, J. Appl. Phys. (2007). https://doi.org/10.1063/1.2748629
X. Jiang, Z. Peng, Y. Gao, F. You, C. Yao, Powder Technol. (2021). https://doi.org/10.1016/j.powtec.2020.09.030
U. Oemar, K. Hidajat, S. Kawi, Int. J. Hydrog. Energy. (2015). https://doi.org/10.1016/j.ijhydene.2015.07.076
A.P. Jadhav, A.U. Pawar, U. Pal, Y.S. Kang, J. Mater. Chem. C (2014). https://doi.org/10.1039/C3TC31939C
E.J. Rubio, V.V. Atuchin, V.N. Kruchinin, L.D. Pokrovsky, I.P. Prosvirin, C.V. Ramana, J. Phys. Chem. C (2014). https://doi.org/10.1021/jp502876r
T. Honma, R. Sato, Y. Benino, T. Komatsu, V. Dimitrov, J. Non-Cryst, Solids (2000). https://doi.org/10.1016/S0022-3093(00)00156-3
Y. Kumar, M. Pal, M. Herrera, X. Mathew, Opt. Mater. (2016). https://doi.org/10.1016/j.optmat.2016.07.026
J.J. Tang, Y. Wang, Z. Jiao, M. Wu, Mater. Lett. (2009). https://doi.org/10.1016/j.matlet.2009.03.044
D. Wang, D. Yu, M. Mo, X. Liu, Y. Qian, J. Cryst. Growth (2003). https://doi.org/10.1016/S0022-0248(03)01019-4
G. De, W. Qin, J. Zhang, J. Zhang, Y. Wang, C. Cao, Y. Cui, J. Lumin. (2006). https://doi.org/10.1016/j.jlumin.2005.12.041
H. Ahmadian, F. Al Hessari, A.M. Arabi, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.06.106
S. Kumar, F.A. Alharthi, A. Marghany, F. Ahmed, N. Ahmad, K.H. Chae, K. Kumari, Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2020.09.268
R. Medhi, C.H. Li, S.H. Lee, M.D. Marquez, A.J. Jacobson, T.C. Lee, T.R. Lee, ACS Appl. Nano Mater. (2019). https://doi.org/10.1021/acsanm.9b01474
S. Saha, M. Jana, P. Khanra, P. Samanta, H.Y. Koo, N.C. Murmu, T. Kuila, RSC. Adv. (2015). https://doi.org/10.1039/C5RA20928E
K.W. Noh, University of Illinois at Urbana-Champaign, 2010, Urbana, Illinois. http://hdl.handle.net/2142/15964
N. Shehata, K. Meehan, M. Hudait, N. Jain, J. Nanopart. Res. (2012). https://doi.org/10.1007/s11051-012-1173-1
P. Patsalas, S. Logothetidis, L. Sygellou, S. Kennou, Phys. Rev. B. (2003). https://doi.org/10.1103/PhysRevB.68.035104
J.Z. Liu, P.X. Yan, G.H. Yue, J.B. Chang, D.M. Qu, R.F. Zhuo, J. Phys. D: Appl. Phys. (2006). https://doi.org/10.1088/0022-3727/39/11/006/meta
K.H. Lee, Y.J. Bae, S.H. Byeon, Bull. Korean Chem. Soc. (2008). https://doi.org/10.5012/bkcs.2008.29.11.2161
L. Shastri, M.S. Qureshi, M.M. Malik, J. Phys. Chem. Solids (2013). https://doi.org/10.1016/j.jpcs.2012.12.012
C. Insu, K. Jun-Gill, S. Youngku, Bull. Korean Chem. Soc. (2014). https://doi.org/10.5012/BKCS.2014.35.2.575
N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, B. Rudraswamy, C. Shivakumara, K. Narahari, R.P.S. Chakradhar, Spectrochim. Acta. Part. A (2012). https://doi.org/10.1016/j.saa.2011.05.072
H. Nagabhushana, B.M. Nagabhushana, M.M. Kumar, Chikkahanumantharayappa, K.V.R. Murthy, C. Shivakumara, R.P.S. Chakradhar, Spectrochim. Acta Part A. 78, 64–69 (2011). https://doi.org/10.1016/j.saa.2010.08.063
R. Nasser, W.B.H. Othmen, H. Elhouichet, M. Férid, Appl. Surf. Sci. (2017). https://doi.org/10.1016/j.apsusc.2016.09.158
Z. Xu, Q. Zhao, B. Ren, L. You, Y. Sun, J. Nanosci. Nanotechnol. (2014). https://doi.org/10.1166/jnn.2014.8741
H.J. Devi, W.R. Singh, R. Singh Loitongbam, J. Fluoresc. (2016). https://doi.org/10.1007/s10895-016-1776-5
M. Scarafagio, A. Tallaire, K.J. Tielrooij, D. Cano, A. Grishin, M.H. Chavanne, F.H.L. Koppens, A. Ringuedé, M. Cassir, D. Serrano, P. Goldner, A. Ferrier, J. Phys. Chem. C (2019). https://doi.org/10.1021/acs.jpcc.9b02597
Q. Wang, W. Wu, J. Zhang, G. Zhu, R. Cong, J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2018.10.110
R.R. Pereira, F.T. Aquino, A.F.P. Goldner, R.R. Gonçalves, J. Lumin. (2016). https://doi.org/10.1016/j.jlumin.2015.08.068
K.V. Chandekar, A. Khan, T. Alshahrani, M. Shkir, A. Kumar, A.M. El-Toni, A.A. Ansari, A. Aldalbahi, M. Ahmed, S. AlFaify, Mater. Charact. (2020). https://doi.org/10.1016/j.matchar.2020.110688