Studies on Stewart platform manipulator: A review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Y. D. Patel and P. M. George, Parallel manipulators applications-A survey, J. of Modern Mechanical Engineering, Scientific Research, 2 (2012) 57–64.
V. E. Gough, Contribution to discussion of papers on research in automobile stability, control and tyre performance, Proc.eding of Institute of Mechanical Engineering, (1956/57) 392–394.
D. Stewart, A platform with six degree of freedom, Proceedings of Institute of Mechanical Engineering, 180 (15) (1965/66) 371–386.
B. Dasgupta and T. S. Mruthyunjaya, The Stewart platform manipulator: A review, Mechanism and Machine Theory, 35 (2000) 15–40.
P. Chowdhury and A. Ghosal, Singularity and controllability analysis of parallel manipulators and closed-loop mechanisms, Mechanism and Machine Theory, 35 (2000) 1455–1479.
B. Mayer St-Onge and C. Gosselin, Singularity analysis and representation of the general Gough-Stewart platform, International J. of Robotics Research, 19 (3) (2000) 271–288.
J. P. Merlet and D. Daney, A formal-numerical approach to determine the presence of singularity within the workspace of a parallel robot, Proceedings of the International Workshop on Computational Kinematics, Seoul, May 20-22 (2001) 167–176.
A. K. Dash, I. M. Chen, S. H. Yeo and G. Yang, Singularityfree path planning of parallel manipulators using clustering algorithm and line geometry, Proceedings of the IEEE International Conference on Robotics and Automation (2003).
S. Bandyopadhay and A. Ghosal, Analysis of configuration space singularities of closed loop mechanisms and parallel manipulators, Mechanism and Machine Theory, 39 (2004) 519–544.
P. Ben-Horin and M. Shoham, Application of grassmanncayley algebra to geometrical interpretation of parallel robot singularities, International J. of Robotics Research, 28 (1) (2009) 127–141.
Y. Cao, H. Zhou, L. Shen and B. Li, Singularity kinematics principle and position-singularity analyses of the 6-3 Stewart-Gough parallel manipulators, J. Mech. Sci. Technol., 25 (2) (2011) 513–522.
O. Bohigas, M. Manubens and L. Ros, Planning singularity-free force feasible paths on the Stewart platform, Latest Advances in Robot Kinematics (2012) 245–252.
O. Bohigas, D. Zlatanov, L. Ros, M. Manubens and J. M. Porta, Numerical computation of manipulator singularities, Proceedings of the IEEE International Conference on Robotics and Automation (2012) 1351–1358.
H. Li, C. M. Gosselin, M. J. Richard and B. St-Onge, Analytic form of the six-dimensional singularity locus of the general Gough-Stewart platform, ASME J. Mech. Des., 128 (2006) 279–287.
B. St-Onge and C. M. Gosselin, Singularity analysis and representation of the general Gough-Stewart platform, International J. of Robotics Research, 19 (3) (2000) 271–288.
V. Shanker and S. Bandyopadhay, Singular manifold of the general hexagonal Stewart platform manipulator, Latest Advances in Robot Kinematics (2012) 397–404.
Y. Cao, M. Wu and H. Zhou, Position-singularity characterization of a special class of the stewart parallel mechanisms, International J. of Robotics and Automation, 28 (1) (2013) 57–64.
K. Doyon, C. Gosselin and P. Cardou, A vector expression of the constant-orientation singularity locus of the Gough-Stewart platform, ASME J. of Mechanisms and Robotics, 5 (2013).
R. Di Gregorio, Singularity-locus expression of a class of parallel mechanisms, Robotica, 20 (2002) 323–328.
J. P. Merlet, Solving the forward kinematics of a Goughtype parallel manipulator with interval analysis, International J. of Robotics Research, 23 (3) (2004) 221–235.
I. A. Bonev, D. Zlatanov and C. Gosselin, Advantages of the modified Euler angles in the design and control of PKMs, Proc.eding of the Third Chemnitz Parallel Kinematics Seminar, Parallel Kinematic Machines International Conference, Chemnitz, Germany, April 23-25 (2002) 171–187.
I. Bonev and J. Ryu, A new approach to orientation workspace analysis of 6-DOF parallel manipulators, Mechanism and Machine Theory, 36 (2001) 15–28.
S. H. Lee, J. B. Song, W. C. Choi and D. Hong, Workspace and force-moment transmission of a variable arm type parallel manipulator, Proceedings of the IEEE International Conference on Robotics and Automation, Washington (2002) 3666–3671.
G. Yang, W. Lin, S. K. Mustafa, I. M. Chen and S. H. Yeo, Numerical orientation workspace analysis with different parameterization methods, Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics, Bangkok, Thailand (2006).
F. Pernkopf and M. Husty, Workspace analysis of Stewart-Gough type parallel manipulators, Proceedings of the I MECH E Part C: J. of Mechanical Engineering Sciences, 220 (7) (2006) 1019–1032.
Q. Jiang and C. M. Gosselin, Determination of the maximal singularity-free orientation workspace for the Gough-Stewart platform, Mechanism and Machine Theory, 44 (2009) 1281–1293.
S. Sen, B. Dasgupta and A. K. Mallik, Variational approach for singularity-free path-planning of parallel manipulators, Mechanism and Machine Theory, 38 (2003) 1165–1183.
Q. Jiang and C. Gosselin, Evaluation and representation of the theoretical orientation workspace of the gough-stewart platform, ASME J. of Mechanisms and Robotics, 1 (2) (2009) 021004.
K. Tsai and J. Lin, Determining the compatible orientation workspace of Stewart-Gough parallel manipulators, Mechanism and Machine Theory, 41 (10) (2006) 1168–1184.
O. Bohigas, M. Manubens and L. Ros, A linear relaxation method for computing workspace slices of the Stewart platform, ASME J. of Mechanisms and Robotics, 5 (2013).
I. A. Bonev and J. Ryu, A new method for solving the direct kinematics of general 6-6 Stewart platforms using three linear extra sensors, Mechanism and Machine Theory, 35 (2000) 423–436.
Z. Mu and K. Kazerounian, A real parameter continuation method for complete solution of forward position analysis of the general Stewart, ASME J. of Mechanical Design, 124 (2) (2002) 236–244.
G. Wang and X. Wang, Forward displacement analysis of two classes of Stewart platform using one unified mathematical model, System Control: Theory Appl. (2000) 65–70.
E. Wolbrecht, H. Su, A. Perez and J. M. McCarthy, Geometric design of symmetric 3-rrs constrained parallel platforms, Proc. ASME Dyn. Syst. Contr. Div., 73 (2) (2004) 1059–1064.
W. S. Chen, H. Chen and J. K. Liu, Extreme configuration bifurcation analysis and link safety length of Stewart platform, Mechanism and Machine Theory, 43 (2008) 617–626.
F. Gao, W. Li, X. Zhao, Z. Jin and H. Zhao, New kinematic structures for 2-, 3-, 4-, and 5-DOF parallel manipulator designs, Mechanism and Machine Theory, 37 (2002) 1395–1411.
X. Huang, Q. Liao and S. Wei, Closed form forward kinematics for a symmetrical 6-6 Stewart platform using algebraic elimination, Mechanism and Machine Theory, 45 (2010) 327–334.
T. Y. Lee and J. K. Shim, Algebraic elimination-based realtime forward kinematics of the 6-6 Stewart platform with planar base and platform, Proceedings of the 2001 IEEE International Conference on Robotics and Automation, Seoul, Korea, 2 (5) (2001) 1301–1306.
Y.-J. Chiu and M.-H. Perng, Self-calibration of a general hexapod manipulator with enhanced precision in 5-DOF motions, Mechanism and Machine Theory, 39 (2004) 1–23.
K. T. Sung, W. Park and Y. K. Lee, Study on observability of parallel-typed machining centre using a single planar table and digital indicators, Mechanism and Machine Theory, 41 (2006) 1147–1156.
B. Jokiel Jr., J. C. Ziegert and L. Bieg, Uncertainty propagation in calibration of parallel kinematics machines, Precision Engineering, 25 (2001) 48–55.
S. C. Ridgeway and C. D. Crane, Optimized kinematics of a 6-6 parallel mechanism considering position and orientation errors, The 16th Florida Conference on the Recent Advances in Robotics, Florida Atlantic University, Boca Raton (2003).
G. Meng, L. Tiemin, T. Xiaoqiang and D. Guanghong, Estimates of identification result disturbances in parallel mechanism calibration, Tsinghua Science and Technology, 11 (2006) 80–87.
H. Wang and K.-C. Fan, Identification of strut and assembly errors of a 3-PRS serial-parallel machine tool, International J. of Machine Tools & Manufacture, 44 (2004) 1171–1178.
H. S. Kim, Kinematics calibration of a cartesian parallel manipulator, International J. of Control, Automation, and Systems, 3 (2005) 453–460.
Y. Ting, H.-C. Jar and C.-C. Li, Measurement and calibration for Stewart micromanipulation system, Precision Engineering (2007) 226–233.
T.-Y. Lee and J.-K. Shim, Improved dialytic elimination algorithm for the forward kinematics of the general Stewart-Gough platform, Mechanism and Machine Theory, 38 (2003) 563–577.
E. Castillo-Castaneda and Y. Takeda, Improving path accuracy of a crank-type 6-dof parallel mechanism by stiction compensation, Mechanism and Machine Theory, 43 (2008) 104–114.
J. Gao, P. Webb and N. Gindy, Error reduction for an inertial-sensor-based dynamic parallel kinematics machine positioning system, Measurement Science and Technology, 14 (2003) 543–550.
T. Oiwa, Study on accuracy improvement of parallel kinematics machine-compensation methods for thermal expansion of link and machine frame, 1st Korea Japan Conf. Positioning Technol. (2002) 189–194.
S. R. Lim, W. C. Choi, J.-B. Song and D. Hong, Error model and accuracy analysis of a cubic parallel device, International J. of the Korean Society of Precision Engineering, 2 (2001).
M. M. Agheli and M. J. Nategh, Identifying the kinematic parameters of hexapod machine tool, World Academy of Science, Engineering and Technology, 52 (2009).
T. A. Dwarakanath, B. Dasgupta and T. S. Mruthyunjaya, Design and development of a Stewart platform based forcetorque sensor, Mechatronics, 11 (2001) 793–809.
C. G. Kang, Closed-form force sensing of a 6-axis force transducer based on the Stewart platform, Sensors and Actuators, A 90 (2001) 31–37.
D. M. Gan, Q. Z. Liao, J. S. Dai, S. M. Wei and L. D. Seneviratne, Forward displacement analysis of a new 1CCC-5SPS parallel mechanism using Grobner theory, Proc. Inst. Mech. Eng., C, J. Mech. Eng. Sci., 223 (2009) 1233–1241.
J. P. Merlet, Solving the forward kinematics of a Goughtype parallel manipulator with interval analysis, International J. of Robotics Research, 23 (3) (2004) 221–235.
D. Jakobovic and L. Budin, Forward kinematics of a Stewart platform mechanism, IEEE 6th Int. Conf. Intell. Eng. Syst., Opatija, Croatia (2002).
L. Rolland, Certified solving of the forward kinematics problem with an exact algebraic method for the general parallel manipulator, Advanced Robotics, 19 (9) (2005) 995–1025.
Y. J. Chiu and M. H. Perng, Forward kinematics of a general fully parallel manipulator with auxiliary sensors, The International J. of Robotics Research, 20 (5) (2001) 401–414.
J. Gallardo-Alvarado, Kinematics of a hybrid manipulator by means of screw theory, Multibody System Dynamics, 14 (3) (2005) 345–366.
A. Wolf and M. Shoham, Screw theory tools for the synthesis of the geometry of a parallel robot for a given instantaneous task, Mechanism and Machine Theory, 41 (2006) 656–670.
J. G. Alvarado, A. R. Agundis, H. R. Garduno and B. A. Ramirez, Kinematics of an asymmetrical three legged parallel manipulator by means of the screw theory, Mechanism and Machine Theory, 45 (2010) 1013–1023.
B. Dasgupta and T. Mruthyunjaya, A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator, Mechanism and Machine Theory, 33 (8) (1998) 1134–1152.
W. Khalil and O. Ibrahim, General solution for the dynamic modelling of parallel robots, J. of Intelligent and Robotic Systems, 49 (2007) 19–37.
S. Riebe and H. Ulbrich, Modelling and online computation of the dynamics of a parallel kinematic with six degrees-offreedom, Archive of Applied Mechanics, 72 (2003) 817–29.
H. Guo and H. Li, Dynamic analysis and simulation of a six degree of freedom Stewart platform manipulator, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 220 (2006) 61–72.
W. Khalil and S. Guegan, A novel solution for the dynamic modelling of Gough-Stewart manipulators, Proceedings of the IEEE International Conference on Robotics & Automation, Washington (2002).
W. Khalil, Dynamic modeling of robots using Newton-Euler formulation, Informatics in Control, Automation and Robotics, 89 (1) (2011) 3–20.
K. Harib and K. Srinivasan, Kinematic and dynamic analysis of Stewart platform-based machine tool structures, Robotica, 21 (2003) 541–554.
P. Mukherjee, B. Dasgupta and A. K. Malik, Dynamic stability index and vibration analysis of a flexible Stewart platform, J. of Sound and Vibration, 307 (2007) 495–512.
S. Riebe and H. Ulbrich, Modelling and online computation of the dynamics of a parallel kinematic with six degrees-offreedom, Archive of Applied Mechanics, 72 (11–12) (2003) 817–829.
H. Abdellatif and B. Heimann, Computational efficient inverse dynamics of 6-DOF fully parallel manipulators by using the lagrangian formalism, Mechanism and Machine Theory, 44 (2009) 192–207.
N. Leroy, A. M. Kokosy and W. Perruquetti, Dynamic modeling of a parallel robot, Application to a surgical simulator, Proc. IEEE Int. Conf. Robot. Automat., 3 (2003) 4330–4335.
I. Ebert-Uphoff and K. Kozak, Review of the role of quasicoordinates for the kinematic and dynamic modeling of parallel manipulators, Proceedings of the Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, Quebee City, Canada (2002) 328–338.
C. T. Chen, A lagrangian formulation in terms of quasicoordinates for the inverse dynamics of the general 6-6 Stewart platform manipulator, JSME International J., 46 (3) (2003) 1084–1090.
F. Caccavale, G. Ruggiero, B. Siciliano and L. Villani, On the dynamics of a class of parallel robots, Proceedings of the 7th International Symposium on Advances in Robot Kinematics, Kluwer Academic Publishers, Piran-Portoroz, SLO (2000) 187–196.
L. W. Tsai, Solving the inverse dynamics of a Stewart-Gough manipulator by the principle of virtual work, ASME J. of Mechanical Design, 122 (5) (2000) 3–9.
S. Staicu, Dynamics analysis of the star parallel manipulator, Robotics and Autonomous Systems, 57 (11) (2009) 1057–64.
H. Abdellatif, M. Grotjahn and B. Heimann, High efficient dynamics calculation approach for computed-force control of robots with parallel structures, Proceedings of the 44 th IEEE Conference on Decision and Control and the European Control Conference, Seville, Spain (2005) 2024–2029.
H. Abdellatif and B. Heimann, Adapted time-optimal trajectory planning for parallel manipulators with full dynamics modeling, Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain (2005) 413–418.
W. Khalil and S. D. Guegan, Inverse and direct dynamics modeling of Stewart-Gough robots, IEEE Transactions on Robotics, 20 (4) (2004) 754–762.
X. Bai, J. D. Turner and J. L. Junkins, Dynamic analysis and control of a Stewart platform using a novel automatic differentiation method, AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Keystone, Colorado (2006).
Y. K. Yiu, H. Cheng, Z. H. Xiong, G. F. Liu and Z. X. Li, On the dynamics of parallel manipulators, Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, South Korea (2001) 3766–3771.
S. Staicu, X. J. Liu and J. Wang, Inverse dynamics of the HALF parallel manipulator with revolute actuators, Nonlinear Dynamics, 50 (2007) 1–12.
L. W. Tsai, Solving the inverse dynamics of Stewart-Gough manipulator by the principle of virtual work, ASME J. of Mechanical Design, 122 (2000) 3–9.
J. Gallardo, J. Rico, A. Frisoli, D. Checcacci and M. Bergamasco, Dynamics of parallel manipulators by means of screw theory, Mechanism and Machine Theory, 38 (2003) 1113–31.
S. Staicu and D. Zhang, A novel dynamic modelling approach for parallel mechanisms analysis, Robotics and Computer-Integrated Manufacturing, 24 (2008) 167–72.
K. Miller, Optimal design and modelling of spatial parallel manipulators, International J. of Robotics Research, 23 (2004) 127–40.
Y. K. Yiu, H. Cheng, Z. H. Xiong, G. F. Liu and Z. X. Li, On the dynamics of parallel manipulators, Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, Korea (2001) 3766–3771.
H. Abdellatif and B. Heimann, Computational efficient inverse dynamics of 6-DOF fully parallel manipulators by using the Lagrangian formalism, Mechanism and Machine Theory, 44 (2009) 192–207.
J. Wang, J. Wu, I. Wang and T. Li, Simplified strategy of the dynamic model of a 6-UPS parallel kinematic machine for real-time control, Mechanism and Machine Theory, 42 (2007) 1119–40.
A. Sokolov and P. Xirouchakis, Dynamics analysis of a 3-DOF parallel manipulator with R-P-S joint structure, Mechanism and Machine Theory, 42 (2007) 541–57.
A. Lopes, A computational efficient approach to the dynamic modelling of 6-dof parallel manipulators, Proceedings of 6th EUROMECH Nonlinear Dynamics Conference, Saint Petersburg, Russia (2008).
A. M. Lopes, Dynamic modeling of a Stewart platform using the generalized momentum approach, Communications in Nonlinear Science and Numerical Simulation, 14 (2009) 3389–3401.
P. Shi and J. McPhee, Dynamics of flexible multibody systems using virtual work and linear graph theory, Multibody Systems Dynamics, 4 (2000) 355–381.
T. Geike and J. McPhee, Inverse dynamic analysis of parallel manipulators with full mobility, Mechanism and Machine Theory, 38 (2003) 549–562.
F. Xi and R. Sinatra, Inverse dynamics of hexapods using the natural orthogonal complement method, J. of Manufacturing Systems, 21 (2) (2002).
J. M. Selig and X. Ding, Theory of vibration in Stewart platform, Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Maui, Hawali, USA (2001) 2190–2195.
P. Mukherjee, B. Dasgupta and A. K. Mallik, Dynamic stability index and vibration analysis of a flexible Stewart platform, J. of Sound and Vibration, 307 (2007) 495–512.
R. Gexue, L. Qiuhai, H. Ning, N. Rendong and P. Bo, On vibration control with Stewart parallel mechanism, Mechatronics, 14 (2004) 1–13.
Y. Cheng, G. Ren and S. L. Dai, The multi-body system modelling of the Gough-Stewart platform for vibration control, J. of Sound and Vibration, 271 (2004) 599–614.
X. Wang and J. K. Mills, FEM dynamic model for active vibration control of flexible linkages and its application to a planar parallel manipulator, Applied Acoustics, 66 (2005) 1151–1161.
H. J. Chen, Payload pointing and active vibration isolation using hexapod platforms, 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, Virginia (2003).
L. Lei and W. Benli, Multi objective robust active vibration control for flexure jointed struts of Stewart platforms via H∞ and μ synthesis, Chinese J. of Aeronautics, 21 (2008) 125–133.
A. Abu Hanieh, Active isolation and damping of vibrations via Stewart platform, Ph.D. Thesis, ULB-Active Structures Laboratory, Brussels, Belgium (2003).
M. Avraam, B. de Marneffe, I. Romanescu, M. Horodinca, A. Deraemaeker and A. Preumont, A six degrees of freedom active isolator based on Stewart platform for space applications, 56 th International Astronautical Congress, Fukuoka, Japan (2005) (Paper IAC-05-C2.2.01).
E. H. Anderson, J. P. Fumo and R. S. Erwin, Satellite ultraquiet isolation technology experiment (SUITE), Proceedings of the IEEE Aerospace Conference (Cat. No. 00TH8484), 4 (2000) 299–313.
Y. Yun and Y. Li, A general dynamics and control model of a class of multi-DOF manipulators for active vibration control, Mechanism and Machine Theory, 46 (2011) 1549–1574.
D. Thayer, M. Campbell, J. Vagners and A. von Flotow, Six-axis vibration isolation system using soft actuators and multiple sensors, J. of Spacecraft and Rockets, 39 (2) (2002) 206–212.
T. Zhang, C. Jiang, H. Zhang and H. Xu, Giant magnetostrictive actuators for active vibration control, Smart Materials and Structures, 13 (2004) 473–477.
W. Chi, D. Cao, D. Wang, J. Tang, Y. Nie and W. Huang, Design and experimental study of a VCM-based Stewart parallel mechanism used for active vibration isolation, Energies, 8 (8) (2015) 8001–8019.
A. Preumont, M. Horodina, I. Romanescu, B. de Marneffe, M. Avraam, A. Deraemaeker, F. Bossens and A. A. Hanief, A six-axis single-stage active vibration isolator based on Stewart platform, J. of Sound and Vibration, 300 (2007) 644–661.
D. Thayer, M. Campbell, J. Vagners and A. Von Flotow, A unique six-axis active isolation system for spacecraft, American Institute of Aeronautics and Astronautics, J. of Spacecraft and Rockets, 39 (2) (2002) 206–212.
G. S. Haugea and M. E. Campbell, Sensors and control of a space-based six-axis vibration isolation system, J. of Sound and Vibration, 269 (2004) 913–931.
A. Joshi, System identification and multivariable control design for a satellite ultra-quiet isolation technology experiment (SUITE), M.S. Thesis, Texas A&M University (2002).
A. Joshi and W. Kim, Modeling and multivariable control design methodologies for hexapod-based satellite vibration isolation, J. of Dynamic Systems, Measurement, and Control, 127 (4) (2005) 700–704.
A. Joshi and W. J. Kim, Modeling and 6-DOF vibration reduction for a spacecraft with precision sensors, Proceedings of the American Control Conference, Denver, Colorado (2003).
M. Mahboubkhah, M. J. Nategh and S. E. Khadem, Vibration analysis of machine tool’s hexapod table, Int. J. Adv. Manuf. Technol., 38 (2008) 1236–1243.
Y. Yun and Y. Li, Modeling and control analysis of a 3-PUPU dual compliant parallel manipulator for micro positioning and active vibration isolation, ASME J. of Dynamic Systems, Measurement, and Control, 134 (2012).
J. T. Xing, Y. P. Xiong and W. G. Price, Passive-active vibration isolation systems to produce zero or infinite dynamic modulus: Theoretical and conceptual design strategies, J. of Sound and Vibration, 286 (3) (2005) 615–636.
S. Hongling, Z. Kun, C. Haibo and Z. Peiqiang, Improved active vibration isolation systems, Tsinghua Science and Technology, 12 (5) (2007) 533–539.
M. E. Hoque, T. Mizuno, Y. Ishino and M. Takasaki, A six-axis hybrid vibration isolation system using active zeropower control supported by passive weight support mechanism, J. of Sound and Vibration, 329 (2010) 3417–3430.
G. Piras, W. L. Cleghorn and J. K. Mills, Dynamic finiteelement analysis of a planar high-speed, high-precision parallel manipulator with flexible links, Mechanism and Machine Theory, 40 (2005) 849–862.
J. Yao, Y. Hou, L. Lu and Y. Zhao, Analysis of a prestressed six-component force torque sensor based on Stewart platform, Proceedings of the IEEE International Conference on Robotics and Biomimetics, Kunming, China (2006).
M. Mahboubkhah, M. J. Nategh and S. E. Khadem, A comprehensive study on the free vibration of machine tools’ hexapod table, Int. J. Adv. Manuf. Technol., 40 (2009) 1239–1251.
Z. Y. Jia, S. Lin and W. Liu, Measurement method of sixaxis load sharing based on the Stewart platform, Measurement, 43 (2010) 329–335.
F. A. L. Molina, J. M. Rosario and O. F. A. Sanchez, Simulation environment proposal, analysis and control of a Stewart platform manipulator, 7th Brazilian Conference on Dynamics, Control & Applications (2008).
C. Yang, Z. Ye and O. O. Peter, Modeling and simulation of spatial 6-DOF parallel robots using simulink & simmechanics, IEEE 978-1-4244-5539-3/10 (2010).
L. Brezinaa, O. Andrs and T. Brezinaa, NI LabView — Matlab SimMechanics Stewart platform design, Applied and Computational Mechanics, 2 (2008) 235–242.
J. M. Paros and L. Weisbord, How to design flexure hinges, Machine Design, 25 (1965) 151–156.
K. M. Ragulskis, M. G. Arutunian, A. V. Kochikian and M. Z. Pogosian, A study of flllet type flexure hinges and their optimal design, Vibration Engineering, 3 (1989) 447–452.
T. S. Smith, V. G. Badami, J. S. Dale and Y. Xu, Elliptical flexure hinges, Review of Scientiflc Instruments, 68 (3) (1997) 1474–1483.
S. Smith, Flexures: Elements of elastic mechanisms, Gordon and Breach Science Publishers, New York (2000).
N. Lobontiu, J. S. N. Paine, E. Garcia and M. Goldfarb, Corner fllleted flexure hinges, ASME J. of Mechanical Design, 123 (2001) 346–352.
W. Xu and T. G. King, Flexure hinges for piezo-actuator displacement ampliflers: Flexibility, accuracy and stress considerations, Precision Engineering, 19 (1) (1996) 4–10.
J. W. Ryu and D. G. Gweon, Error analysis of a flexure hinge mechanism induced by machining imperfection, Precision Engineering, 21 (1997) 83–89.
N. Lobontiu, J. S. N. Paine, E. O’Malley and M. Samuelson, Parabolic and hyperbolic flexure hinges: flexibility, motion precision and stress characterization based on compliance closed-form equations, Precision Engineering, 26 (2002) 183–92.
S. C. Wang, H. Hikita, H. Kubo, Y. S. Zhao, Z. Huang and T. Ifukube, Kinematics and dynamics of a 6 degree-offreedom fully parallel manipulator with elastic joints, Mechanism and Machine Theory, 38 (2003) 439–461.
R. Ranganath, P. S. Nair, T. S. Mruthyunjaya and A. Ghosal, A force-torque sensor based on a Stewart platform in a near-singular configuration, Mechanism and Machine Theory, 39 (2004) 971–998.
P. Kapur, R. Ranganath and B. S. Nataraju, Analysis of Stewart platform with flexural joints at singular configurations, 12th IFToMM World Congress, Besançon, France (2007).
S. Bhavikatti, R. Ranganath and A. Ghosal, A nearsingular, flexure jointed, moment sensitive Stewart platform based force-torque sensor, 13th National Conference on Mechanisms and Machines, IISc, Bangalore, India (2007).
Z. Du, R. Shi and W. Dong, A piezo-actuated highprecision flexible parallel pointing mechanism: Conceptual design, development, and experiments, IEEE Transactions on Robotics, 30 (1) (2014).
J. E. McInroy and J. C. Hamann, Design and control of flexure jointed hexapods, IEEE Transactions on Robotics and Automation, 16 (4) (2000).