Studies on Ion-Acoustic Solitary Waves in Plasmas with Positrons and Two-Temperature Superthermal Electrons through Damped Zakharsov–Kuznetsov–Burgers Equation
Tóm tắt
Propagation of ion-acoustic compressive and rarefactive solitary waves has been studied in a magnetized collisional plasma comprising ions, positrons, dust grains, and kappa-distributed cold and hot electrons. The Damped Zakharsov–Kuznetsov–Burgers (DZKB) equation has been formed using the basic equation with the aid of the reductive perturbation method (RPM). Considering small dissipation exists in the plasma environment, a small amplitude solitary wave solution of the DZKB equation has been derived assuming the validity of conservation law in that nonlinear system. Amplitude and width of the solution strongly depend on the nonlinear and dispersion coefficients of the evolution equation, which are the functions of different plasma parameters, the kinematic viscosity, collisional frequency, ratio of the temperatures of cold and hot electrons, density ratio of cold electrons, concentration of positron particles and concentration of dust particles, and however a significant dependency of the solution on the Burgers and damping term is also found. On the other hand in many times, the dusty plasma becomes strongly dissipative, and naturally, conservation law fails in the system. In general, strong dissipation generates shock waves which becomes a further study through a new solution derived using the extended tanh method. Finally, the parametric studies of solitary solutions are described from a numerical standpoint.
Tài liệu tham khảo
R. Z. Sagdeev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1968), Vol. 4, p. 23.
H. Ikezi, R. Tailor, and D. Baker, Phys. Rev. Lett. 25, 11 (1970).
F. D. Tappert, Phys. Fluids 15, 2446 (1972).
G. C. Das and S. N. Paul, Phys. Fluids 28, 823 (1985).
R. K. Raychoudhury and S. Bhattacharyya, Phys. Fluids 30, 2582 (1987).
S. Tagare, Plasma Phys. 15, 1247 (1973).
F. B. Rizzato, J. Plasma Phys. 40, 289 (1988).
M. J. Rees, in The Very Early Universe, Ed. by G. W. Gibbons, S. W. Hawking, and S. Siklas (Cambridge University Press, Cambridge, 1983), p. 29.
C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973), p. 763.
S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).
Active Galactic Nuclei, Ed. by H. R. Miller and P. J. Witta (Springer, Berlin, 1987), p. 202.
F. C. Michel, Rev. Mod. Phys. 54, 1 (1982).
E. Tandberg-Hanssen and A. G. Emslie, The Physics of Solar Flares (Cambridge University Press, Cambridge, 1988), p. 124.
P. Goldreich and W. H. Julian, Astrophys. J. 157, 869 (1969).
M. Hoshino, J. Arons, Y. A. Gallant, and A. B. Langdon, Astrophys. J. 390, 454 (1992).
A. Mustaque and H. A. Shah, Phys. Plasmas 12, 012301 (2005).
S. Mahamood and H. Saleem, Phys. Plasmas 9, 724 (2002).
Q. Haque, H. Saleem, and J. Vranješ, Phys. Plasmas 9, 474 (2002).
Y. N. Nejoh, Aust. J. Phys. 50, 309 (1997).
M. Salauddin, H. Saleem, and M. Saddiq, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 66, 036407 (2002).
W. H. Zurek, Astrophys. J. 289, 603 (1985).
A. E. Dubinov, D. Y. Kolotkov, and M. A. Sazonkin, Tech. Phys. 57, 585 (2012).
P. K. Shukla, Phys. Scr. 77, 068201 (2008).
R. L. Merlino, in Plasma Physics Applied, Ed. by C. Grabbe (Transworld Research Network, Kerala, 2006), p. 73.
M. Horányi, T. W. Hartquist, O. Havnes, D. A. Mendis, and G. E. Morfill, Rev. Geophys. 42, RG4002 (2004).
P. K. Shukla and M. Marklund, Phys. Scr. 2004, 36 (2004).
N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics (Academic, New York, 1973), p. 106.
R. J. Goldston and P. H. Rutherford, Introduction to Plasma Physics (IOP, Bristol, 1995), p. 363.
S. Ichimaru, Basic Principles of Plasma Physics: A Statistical Approach (Benjamin, New York, 1973), p. 77.
A. Hasegawa, Plasma Instabilities and Nonlinear Effects (Springer, New York, 1975), p. 34.
R. C. Davidson, Methods in Nonlinear Plasma Theory (Academic, New York, 1972), p. 15.
D. R. Nicholson, Introduction to Plasma Theory (Wiley, New York, 1983), p. 171.
F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum, New York, 1984), p. 297.
R. A. Truemann and W. Baumjohann, Advanced Space Plasma Physics (Imperial College Press, London, 1984), p. 243.
S. I. Popel, S. V. Vladimirov, and P. K. Shukla, Phys. Plasmas 2, 716 (1995).
Y. N. Nejoh, Phys. Plasmas 3, 1447 (1996).
S. Mahmood, A. Mushtaq, and H. Saleem, New J. Phys. 5, 28 (2003).
S. Ghosh and R. Bharuthram, Astrophys. Space Sci. 314, 121 (2008).
N. S. Saini, B. S. Chahal, and A. S. Bains, Astrophys. Space Sci. 347, 129 (2013).
M. M. Masud, S. Sultana, and A. A. Mamun, Astrophys. Space Sci. 348, 99 (2013)
S. Guo, L. Mei, and A. Sun, Ann. Phys. 332, 38 (2012).
S. A. EI-Tantawy, N. A. EI-Bedwehy, and W. M. Moslem, Phys. Plasmas 18, 052113 (2011).
H.-Y. Wang and K.-B. Zhang, J. Korean Phys. Soc. 64, 1677 (2014).
N. Jehan, W. Masood, and A. M. Mirza, Phys. Scr. 80, 035506 (2009).
A. Paul and A. Bandyopadhayay, Astrophys. Space Sci. 361, 172 (2016).
N. S. Saini and K. Singh, Phys. Plasmas 23, 103701 (2016).
B. B. Kadomstev and V. I. Petviashivilli, Sov. Phys.–Dokl. 15, 539 (1970).
V. Zakharov and E. A. Kuznetsov, Sov. Phys.–JETP 39, 285 (1974).
A. R. Seadawy, Comput. Math. Appl. 70, 345 (2015).
A. Palit, A. Roy, and S. Raut, Braz. J. Phys. 52, 110 (2022).
K. K. Mondal, A. Roy, P. Chatterjee, and S. Raut, Int. J. Appl. Comput. Math. 6, 1 (2020).
S. Raut, K. K. Mondal, P. Chatterjee, and A. Roy, Pramana 95, 73 (2021).
S. Raut, S. Roy, R. R. Kairi, and P. Chatterjee, Int. J. Appl. Comput. Math 7, 157 (2021). https://doi.org/10.1007/s40819-021-01034-1
S. Munro and E. J. Parkes, J. Plasma Phys. 70, 543 (2004).
H. Schamel, J. Plasma Phys. 9, 377 (1973).
S. I. Popel, S. N. Andreev, A. A. Gisko, A. P. Golub’, and T. V. Losseva, Plasma Phys. Rep. 30, 284 (2004).
T. V. Losseva, S. I. Popel, and A. P. Golub’, Plasma Phys. Rep. 38, 729 (2012).
T. V. Losseva, S. I. Popel, and A. P. Golub’, Plasma Phys. Rep. 46, 1089 (2020).
G. Lu, Y. Liu, Y. Wang, L. Stenflo, S. I. Popel, and M. Y. Yu, J. Plasma Phys. 76, 267 (2010).
A. Sen, S. Tiwari, S. Mishra, and P. Kaw, Adv. Space Res. 56, 429 (2015).
V. S. Aslanov and V. V. Yudintsev, Adv. Space Res. 55, 660 (2015).
A. Roy, S. Raut, and R. Barman, Plasma Phys. Rep. 48, 367 (2022).
S. Raut, S. Roy, S. Saha, and A. N. Das, Plasma Phys. Rep. 48, 627 (2022).
S. Raut, S. Roy, S. Saha, and A. N. Das, Int. J. Appl. Comput. Math. 8, 196 (2022).
T. Kakutani and C.-C. Wei, J. Phys. Soc. Jpn. 24, 941 (1968).
T. Taniuti and N. Yajima, J. Math. Phys. 10, 1369 (1969).
A. I. Kassem, S. I. Kopnin, S. I. Popel, and L. M. Zelenyi, Plasma Phys. Rep. 48, 1005 (2022).
F. Awawdeh, H. M. Jaradat, and S. Al-Shara, Eur. Phys. J. D 66, 40 (2012).