Structures and properties of functional metal iodates

Science in China Series B: Chemistry - Tập 54 - Trang 911-922 - 2011
ChuanFu Sun1, BingPing Yang1, JiangGao Mao1
1State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China

Tóm tắt

Metal iodates with a lone-pair containing I(V) that is in an asymmetric coordination geometry can form a diversity of unusual structures and many of them are promising new second homonic generation (SHG) materials. They exhibit wide transparency wavelength regions, large SHG coefficients and high optical-damage thresholds as well as moderately high thermal stability. In this paper, the structures and properties of the metal iodates are reviewed. The combination of d0 transition-metal cations with the iodate groups afforded a large number of metal iodates, with cations covering alkali metal, alkaline earth and lanthanide elements. Many of them are noncentrosymmetric (NCS) and display excellent SHG properties due to the additive effects of polarizations from both types of the asymmetric units. Some lanthanide iodates are able to emit strong luminescence in the visible or near-IR regions. The use of transition metal ions with d n (n ≠ 0) electronic configuration into iodate systems can also induce the formation of NCS compounds when the lone pairs of the iodate groups are properly aligned. The d n transition metal cations are normally octahedrally coordinated or in a square-planar coordination geometry. Furthermore, the combination of two different types of lone-pair-containing cations is also an effective strategy to design new SHG materials.

Tài liệu tham khảo

Chen CT, Liu G. Recent advances in nonlinear optical and electro-optical materials. Annu Rev Mater Sci, 1986, 16: 203–243 Ok KM, Halasyamani PS. Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. Chem Soc Rev, 2006, 35: 710–717 Halasyamani PS, Poeppelmeier KR. Noncentrosymmetric oxides. Chem Mater, 1998, 10: 2753–2769 Wickleder MS. Inorganic lanthanide compounds with complex anions. Chem Rev, 2002, 102, 2011–2087 Becker P. Borate materials in nonlinear optics. Adv Mater, 1998, 10: 979–992 Chen CT, Wang YB, Wu BC, Wu KC, Zeng WL, Yu LH. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7. Nature, 1995, 373: 322–324 Chen CT, Wu BC, Jiang AD, You GM. A new-type ultraviolet SHG crystal beta-BaB2O4. Sci Sin Ser B, 1985, 28: 235–243 Hagerman ME, Poeppelmeier KR. Review of the Structure and processing-defect-property relationships of potassium titanyl phosphate: A strategy for novel thin-film photonic devices. Chem Mater, 1995, 7: 602–621 Ballman AA, Brown H. The growth and properties of strontium barium metaniobate, Sr1−x BaxNb2O6, a tungsten bronze ferroelectric. J Cryst Growth, 1967, 1: 311–314 Dmitriev VG, Gurzadyan GG, Nikogosyan DN. Handbook of Nonlinear Optical Crystals. Berlin: Springer, 1991 Boyd GD, Buehler E, Storz FG. Linear and nonlinear optical properties of ZnGeP2 and CdSe. Appl Phys Lett, 1971, 18: 301–304 Liao JH, Marking GM, Hsu KF, Matsushita Y, Ewbank MD, Borwick R, Cunningham P, Rosker MJ, Kanatzidis MG. alpha- and beta-A2Hg3M2S8 (A = K, Rb; M = Ge, Sn): Polar quaternary chalcogenides with strong nonlinear optical response. J Am Chem Soc, 2003, 125: 9484–9493 Zhang Q, Chung I, Jang JI, Ketterson JB, Kanatzidis MG. Chalcogenide chemistry in ionic liquids: Nonlinear optical wave-mixing properties of the double-cubane compound [Sb7S8Br2](AlCl4)3. J Am Chem Soc, 2009, 131: 9896–9897 Pan SL, Smit JP, Watkins B, Marvel MR, Stern CL. Poeppelmeier KR. Synthesis, crystal structure, and nonlinear optical properties of Li6CuB4O10: A congruently melting compound with isolated [CuB4O10]6− units. J Am Chem Soc, 2006, 128: 11631–11634 Zhang WL, Cheng WD, Zhang H, Geng L, Lin CS, He ZZ. A strong second-harmonic generation material Cd4BiO(BO3)3 originating from 3-chromophore asymmetric structures. J Am Chem Soc, 2010, 132: 1508–1509 Huang YZ, Wu LM, Wu XT, Li LH, Chen L, Zhang YF. Pb2B5O9I: An iodide borate with strong second harmonic generation. J Am Chem Soc, 2010, 132: 12788–12789 Halasyamani PS. Asymmetric cation coordination in oxide materials: Influence of lone-pair cations on the intra-octahedral distortion in d0 transition metals. Chem Mater, 2004, 16: 3586–3592 Ok KM, Halasyamani PS. Distortions in octahedrally coordinated d0 transition metal oxides: A continuous symmetry measures approach. Chem Mater, 2006, 18: 3176–3183 Phanon D, Gautier-Luneau I. Promising material for infrared nonlinear optics: NaI3O8 salt containing an octaoxotriiodate(V) anion formed from condensation of [IO3]− ions. Angew Chem Int Ed, 2007, 46, 8488–8491 Ok KM, Halasyamani PS. The lone-pair cation I5+ in a hexagonal tungsten oxide-like framework: Synthesis, structure, and second-harmonic generating properties of Cs2I4O11. Angew Chem In Ed, 2004, 43: 5489–5491 Phanon D, Gautier-Luneau I. New materials for infrared non-linear optics. Syntheses, structural characterisations, second harmonic generation and optical transparency of M(IO3)3 metallic iodates. J Mater Chem, 2007, 17: 1123–1130 Kim SH, Yeon J, Halasyamani PS. Noncentrosymmetric polar oxide material, Pb3SeO5: Synthesis, characterization, electronic structure calculations, and structure-property relationships. Chem Mater, 2009, 21: 5335–5342 Kong F, Huang SP, Sun ZM, Mao JG, Cheng WD. Se2(B2O7): A new type of second-order NLO material. J Am Chem Soc, 2006, 128: 7750–7751 Rosenzweig A, Morosin B. A reinvestigation of the crystal structure of LiIO3. Acta Crystallogr, 1966, 20: 758–761 Ok KM, Halasyamani PS. New metal iodates: Syntheses, structures, and characterizations of noncentrosymmetric La(IO3)3 and NaYl4O12 and centrosymmetric beta-Cs2I4O11 and Rb2I6O15(OH)2·H2O. Inorg Chem, 2005, 44: 9353–9359 Assefa Z, Ling J, Haire RG, Albrecht-Schmitt TE, Sykora RE. Syntheses, structures, and vibrational spectroscopy of the two-dimensional iodates Ln(IO3)3 and Ln(IO3)3(H2O) (Ln = Yb, Lu). J Solid State Chem, 2006, 179: 3653–3663 Ngo N, Kalachnikova K, Assefa Z, Haire RG, Sykora RE. Synthesis and structure of In(IO3)3 and vibrational spectroscopy of M(IO3)3 (M = Al, Ga, In). J Solid State Chem, 2006, 179: 3824–3830 Sykora RE, Khalifah P, Assefa Z, Albrecht-Schmitt TE, Haire RG. Magnetism and Raman spectroscopy of the dimeric lanthanide iodates Ln(IO3)3 (Ln = Gd, Er) and magnetism of Yb(IO3)3. J Solid State Chem, 2008, 181: 1867–1875 Hector AL, Henderson SJ, Levason W, Webster M. Hydrothermal synthesis of rare earth iodates from the corresponding periodates: Structures of Sc(IO3)3, Y(IO3)3·2H2O, La(IO3)3·1/2H2O and Lu(IO3)3·2H2O. Z Anorg Allg Chem, 2002, 628: 198–202 Douglas P, Hector AL, Levason W, Light ME, Matthews ML, Webster M. Hydrothermal synthesis of rare earth iodates from the corresponding periodates: Synthesis and structures of Ln(IO3)3 (Ln = Pr, Nd, Sm, Eu, Gd, Tb, Ho, Er) and Ln(IO3)3·2H2O (Ln = Eu, Gd, Dy, Er, Tm, Yb). Z Anorg Allg Chem, 2004, 630: 479–483 Chen X, Xue H, Chang X, Zang H, Xiao W. Hydrothermal synthesis and crystal structures of Nd(IO3)3 and Al(IO3)3. J Alloy Compd, 2005, 398: 173–177 Phanon D, Bentria B, Benbertal D, Mosset A, Gautier-Lunean I. New potential materials for infrared nonlinear optics. Preparation, characterisation and optical transparency of monometallic and bimetallic iodates. Solid State Sci, 2006, 8: 1466–1472 Masse R, Guitel JC. Chemical preparation and crystal structure of silver iodate. J Solid State Chem, 1980, 32: 177–180 Bean AC, Campana CF, Kwon O, Albrecht-Schmitt TE. A new oxoanion: [IO4]3− containing I(V) with a stereochemically active lone-pair in the silver uranyl iodate tetraoxoiodate(V), Ag4(UO2)4− (IO3)2(IO4)2O2. J Am Chem Soc, 2001, 123: 8806–8810 Bean AC, Peper SM, Albrecht-Schmitt TE. Structural relationships, interconversion, and optical properties of the uranyl iodates, UO2(IO3)2 and UO2(IO3)2(H2O): A comparison of reaactions under mild and supercritical conditions. Chem Mater, 2001, 13: 1266–1272 Ling J, Albrecht-Schmitt TE. Intercalation of iodic acid into the layered uranyl iodate, UO2(IO3)2(H2O). Inorg Chem, 2007, 46: 346–347 Sykora RE, Wells DM, Albrecht-Schmitt TE. Hydrothermal synthesis and structure of a new one-dimensional, mixed-metal U(VI) iodate, CS2[(UO2)(CrO4)(IO3)2]. Inorg Chem, 2002, 41: 2304–2306 Bray TH, Beitz JV, Bean AC, Yu Y, Albrecht-Schmitt TE. Structural polarity induced by cooperative hydrogen bonding and lone-pair alignment in the molecular uranyl iodate Na2[UO2(IO3)4(H2O)]. Inorg Chem, 2006, 45: 8251–8257 Bean AC, Ruf M, Albrecht-Schmitt TE. Excision of uranium oxide chains and ribbons in the novel one-dimensional uranyl iodates K2[(UO2)3(IO3)4O2] and Ba[(UO2)2(IO3)2O2](H2O). Inorg Chem, 2001, 40: 3959–3963 Sykora RE, McDaniel SM, Wells DM, Albrecht-Schmitt TE. Mixed-metal uranium(VI) iodates: Hydrothermal syntheses, structures, and reactivity of Rb[UO2(CrO4)(IO3)(H2O)], A2[UO2(CrO4)(IO3)2] (A = K, Rb, Cs), and K2[UO2(MoO4)(IO3)2]. Inorg Chem, 2002, 41: 5126–5132 Bean AC, Xu Y, Danis JA, Albrecht-Schmitt TE. Aqueous reactions of U(VI) at high chloride concentrations: Syntheses and structures of new uranyl chloride polymers. Inorg Chem, 2002, 41: 6775–6779 Sykora RE, Bean AC, Scott BL, Runde W, Albrecht-Schmitt TE. New one-dimensional uranyl and neptunyl iodates: crystal structures of K3[(UO2)2(IO3)6](IO3)·H2O and K[NpO2(IO3)3]·1.5H2O. J Solid State Chem, 2004, 177: 725–730 Sullens TA, Almond PM, Byrd JA, Beitz JV, Bray TH, Albrecht-Schmitt TE. Extended networks, porous sheets, and chiral frameworks. Thorium materials containing mixed geometry anions: Structures and properties of Th(SeO3)SeO4), Th(IO3)2(SeO4)(H2O)3·H2O, and Th(CrO4)(IO3)2. J Solid State Chem, 2006, 179: 1192–1201 Bean AC, Albrecht-Schmitt TE. Cation effects on the formation of the one-dimensional uranyl iodates A2[(UO2)3(IO3)4O2] (A = K, Rb, Tl) and AE[(UO2)2(IO3)2O2]·(H2O) (AE = Sr, Ba, Pb). J Solid State Chem, 2001, 161: 416–423 Sykora RE, Ok KM, Halasyamani PS, Albrecht-Schmitt TE. Structural modulation of molybdenyl Iodate architectures by alkali metal cations in AMoO3(IO3) (A = K, Rb, Cs): A facile route to new polar materials with large SHG responses. J Am Chem Soc, 2002, 124: 1951–1957 Sykora RE, Ok KM, Halasyamani PS, Wells DM, Albrecht-Schmitt TE. New one-dimensional vanadyl iodates: Hydrothermal preparation, structures, and NLO properties of A[VO2(IO3)2] (A = K, Rb) and A[(VO)2(IO3)3O2] (A = NH4, Rb, Cs). Chem Mater, 2002, 14: 2741–2749 Shehee TC, Sykora RE, Ok KM, Halasyamani PS, Albrecht-Schmitt TE. Hydrothermal preparation, structures, and NLO properties of the rare earth molybdenyl iodates, RE(MoO2)(IO3)4(OH) (RE = Nd, Sm, Eu). Inorg Chem, 2003, 42: 457–462 Chang HY, Kim SH, Halasyamani PS, Ok KM. Alignment of lone pairs in a new polar material: Synthesis, characterization, and functional properties of Li2Ti(IO3)6. J Am Chem Soc, 2009, 131(7): 2426–2427. Chang HY, Kim SH, Ok KM, Halasyamani PS. Polar or nonpolar? A+ cation polarity control in A2Ti(IO3)6 (A = Li, Na, K, Rb, Cs, Tl). J Am Chem Soc, 2009, 131(19): 6865–6873 Sun CF, Hu CL, Xu X, Ling JB, Hu T, Kong F, Long XF, Mao JG. BaNbO(IO3)5: A new polar material with a very large SHG response. J Am Chem Soc, 2009, 131: 9486–9487 Yang BP, Hu CL, Xu X, Sun CF, Zhang JH, Mao JG. NaVO2-(IO3)2(H2O): A unique layered material produces a very strong SHG response. Chem Mater, 2010, 22: 1545–1550 Ling J, Albrecht-Schmitt TE. Square-planar noble metal iodate [M(IO3)4]n− (M = PdII, AuIII; n = 2, 1) anions and their ability to form polar and centrosymmetric architectures. Eur J Inorg Chem, 2007, 5: 652–655 Sun CF, Hu CL, Xu X, Mao JG. Polar or Non-Polar? Syntheses, crystal structures, and optical properties of three new palladium(II) iodates. Inorg Chem, 2010, 49: 9581–9589 Hu T, Qin L, Kong F, Zhou Y, Mao JG. Ln3Pb3(IO3)13(μ3-O) (Ln = La-Nd): New types of second-order nonlinear optical materials containing two types of lone pair cations. Inorg Chem, 2009, 48: 2193–2199 Bentria B, Benbertal D, Bagieu-Beucher M, Masse R, Mosset A. Crystal structure of anhydrous bismuth iodate, Bi(IO3)3. J Chem Crystallogr, 2003, 33(11): 867–873 Phanon D, Gautier-Luneau I. Crystal structure of bismuth triiodate dihydrate, Bi(IO3)3·2H2O. Z Kristallogr, 2006, 221(3): 243–244 Kellersohn T, Alici E, Esser D, Lutz HD. Pb(IO3)2 I-das erste halogenat eines zweiwertigen hauptgruppenmetalls mit schichtenstruktur — kristallstruktur, IR- und Ramanspektren. Z Kristallogr, 1993, 203: 225–233 Belokoneva EL, Dimitrova OV. Synthesis and Crystal Structure of Pb3[IO3]2Cl4, a rresentative of a nw idate-cloride class of compounds. Kristallografiya, 2010, 55: 24–27 Bindi L, Welch MD, Bonazzi P, Pratesi G, Menchetti S. The crystal structure of seeligerite, Pb3IO4Cl3, a rare Pb-I-oxychloride from the San Rafael mine, Sierra Gorda, Chile. ineralogical Magazine, 2008, 72: 771–783 Sun CF, Hu CL, Kong F, Yang BP, Mao JG. Syntheses and crystal structures of four new silver(I) iodates with d0-transition metal cations. Dalton Trans, 2010, 39: 1473–1479 Shehee TC, Pehler SF, Albrecht-Schmitt TE. Hydrothermal synthesis and structures of the homoleptic iodate complexes [M(IO3)6]2− (M = Mo, Zr). J Alloy Compd, 2005, 388: 225–229 Ok KM, Halasyamani PS. New d0 transition metal iodates: Synthesis, structure, and characterization of BaTi(IO3)6, LaTiO(IO3)5, Ba2VO2-(IO3)4·(IO3) K2MoO2(IO3)4, and BaMoO2(IO3)4·H2O. Inorg. Chem. 2005, 44: 2263–2271 Chen XA, Zhang L, Chang X, Zang HG, Xiao WQ. Lithium dioxobis [trioxoiodato(V)]-vanadate, Li[VO2(IO3)2]. Acta Crystallogr Sect C, 2006, 62: i76–i78 Sun CF, Hu T, Xu X, Mao JG. Syntheses, crystal structures, and properties of three new lanthanum(III) vanadium iodates. Dalton Trans, 2010, 39: 7960–7967 Loefgren P. The crystal structure of potassium chromato iodate, KCrIO6. Acta Chem Scand, 1967, 21: 2781–2791 Sykora RE, Wells DM, Albrecht-Schmitt TE. New molybdenyl iodates: Hydrothermal preparation and structures of molecular K2MoO2(IO3)4 and two-dimensional beta-KMoO3(IO3). J Solid State Chem, 2002, 166: 442–448 Chen XA, Zhang L, Chang X, Xue HP, Zang HG, Xiao WQ, Song XM, Yan H. LiMoO3(IO3): A new molybdenyl iodate based on WO3-type sheets with large SHG response. J Alloy Compd, 2007, 428: 54–58 Sykora RE, Wells DM, Albrecht-Schmitt TE. Further evidence for the tetraoxoiodate(V) anion, IO 3−4 : Hydrothermal syntheses and structures of Ba[(MoO2)6(IO4)2O4]·H2O and Ba3[(MoO2)2(IO6)2]·2H2O. Inorg Chem, 2002, 41: 2697–2703 Chen XA, Chang X, Zang HG, Wang Q, Xiao WQ. Hydrothermal synthesis and structural characterization of a novel NLO compound, La(MoO2)(OH)(IO3)4. J Alloy Compd, 2005, 396: 255–259 Yang BP, Sun CF, Hu CL, Mao JG. A series of new alkali metal indium iodates with isolated or extended anions. Dalton Trans, 2011, 40: 1055–1060 Liu XM, Li GH, Hu YW, Yang M, Kong XG, Shi Z, Feng SH. Hydrothermal synthesis and crystal structure of polar and nonpolar compounds in indium iodate family. Cryst Growth Des, 2008, 8: 2453–2457 Schellhaas F, Hartl H, Frydrych R. Die Kristallstruktur von Kaliumhexajodatogermanat(IV). Acta Crystallogr Sect B, 1972, 28: 2834–2838 Li PX, Hu CL, Xu X, Wang RY, Sun CF, Mao JG. Explorations of new second-order nonlinear optical materials in the KI-MII-IV-O systems. Inorg Chem, 2010, 49: 4599–4605