Structures and nonlinear optical properties of lithium-adsorbed polycyclic π-conjugated pentacene systems
Tóm tắt
Structures and nonlinear optical(NLO) properties of eleven new Li
n
-P
m
(n=1–5) species were investigated in detail with the help of ab initio computation, in which one to the maximum five Li atoms are doped over the polycyclic π-conjugated pentacene. These Li-doped pentacene systems exhibit large adsorption energies(ca. 107.0–141.3 kJ/mol) and considerable first hyperpolarizabilities(even up to 4.1×104 a.u.), where the number of Li atoms, the doping site, and the distance between the neighboring Li atoms have important impacts on the β
0 value. In the doped pentacene systems with less Li atoms(one or two), the improvement of β
0 value can be attributed to the simple transfer of the charge from Li atom to pentacene. Differently, doped more Li atoms(three to five) can cause not only charge transfer but also excess electron, and this cooperation can endow the doped systems with the much larger first hyperpolarizabilities. These fascinating findings are advantageous for the design of new NLO materials based on the intriguing polycyclic π-conjugated systems.
Tài liệu tham khảo
Heck J., Dabek S., Meyer-Friedrichesn T., Wong H., Coord. Chem. Rev., 1999, 190–192, 1217
Kanis D. R., Ratner M. A., Marks T., Chem. Rev., 1994, 94, 195
Meyers F., Marder S. R., Pierce B. M., Bredas J. L., J. Am. Chem. Soc., 1994, 116, 10703
Ma N. N., Liu C. G., Qiu Y. Q., Sun S. L., Su Z. M., J. Comput. Chem., 2012, 33, 211
LeCours S. M., Guan H. W., DiMagno S. G., Wang C. H., Therien M. J., J. Am. Chem. Soc., 1996, 118, 1497
Priyadarshy S., Therien M. J., Beratan D. N., J. Am. Chem. Soc., 1996, 118, 1504
De la Torre G., Vaquez P., Agullo-Lopez F., Torres T., Chem. Rev., 2004, 104, 3723
Liu C. G., Guan W., Song P., Yan L. K., Su Z. M., Inorg. Chem., 2009, 48, 6548
Zhang T. G., Zhao Y., Asselberghs I., Persoons A., Clays K., Therien M. T., J. Am. Chem. Soc., 2005, 127, 9710
Tancrez N., Feuvrie C., Ledoux I., Zyss J., Toupet L., Bozec H. L., Maury O., J. Am. Chem. Soc., 2005, 127, 13474
Cornelis D., Franz E., Asselberghs I., Clays K., Verbiest T., Koeckelberghs G., J. Am. Chem. Soc., 2011, 133, 1317
Maury O., Viau L., Senechal K., Corre B., Guegan J. P., Renouard T., Ledoux I., Zyss J., Bozec L. H., Chem. Eur. J., 2004, 10, 4454
Lee S. H., Park J. R., Jeong M. Y., Kim H. M., Li S. J., Song J., Ham S., Jeon S. J., Cho B. R., Chem. Phys. Chem., 2006, 7, 206
Zhou Z. J., Yu G. T., Ma F., Huang X. R., Wu Z. J., Li Z. R., J. Mater. Chem. C, 2014, 2, 306
Yu G. T., Zhao X. G., Niu M., Huang X. R., Zhang H., Chen W., J. Mater. Chem. C, 2013, 1, 3833
Chen L. W., Yu G. T., Chen W., Tu C. Y., Zhao X. G., Huang X. R., Phys. Chem. Chem. Phys., 2014, 16, 10933
Tu C. Y., Yu G. T., Yang G. H., Zhao X. G., Chen W., Li S. C., Huang X. R., Phys. Chem. Chem. Phys., 2014, 16, 1597
Chen W., Li Z. R., Wu D., Li Y., Sun C. C., Gu F. L., J. Am. Chem. Soc., 2005, 127, 10977
Xu H. L., Li Z. R., Wu D., Wang B. Q., Li R. Y., Gu F. L., Aoki Y., J. Am. Chem. Soc., 2007, 129, 2967
Chen W., Li Z. R., Wu D., Li Y., Sun C. C., J. Phys. Chem. B, 2005, 109, 601
Muhammad S., Xu H. L., Liao Y., Kan Y. H., Su Z. M., J. Am. Chem. Soc., 2009, 131, 11833
Yu G. T., Huang X. R., Chen W., Sun C. C., J. Comput. Chem., 2011, 32, 2005
Zhou Z. J., Li H., Huang X. R., Wu Z. J., Ma F., Li Z. R., Comput. Theor. Chem., 2013, 1023, 99
Niu M., Yu G. T., Yang G. H., Chen W., Zhao X. G., Huang X. R., Inorg. Chem., 2014, 53, 349
Zhao X. G., Yu G. T., Huang X. R., Chen W., Niu M., J. Mol. Model., 2013, 19, 5601
Chen W., Yu G. T., Jin P., Li Z. R., Huang X. R., J. Comput. Theor. Nanosci., 2011, 8, 2482
Li S. C., Yu G. T., Chen W., Huang X. R., Chem. J. Chinese Universities, 2014, 35(11), 2390
Pramanik G., Miller P., Molecules., 2012, 17, 4625
Mondal R., Tönshoff C., Khon D., Neckers D. C., Bettinger H. F., J. Am. Chem. Soc., 2009, 131, 14281
Sakamoto Y., Suzuki T., Kobayashi M., Gao Y., Fukai Y., Inoue Y., Sato F., Tokito S., J. Am. Chem. Soc., 2004, 126, 8138
Kleemann H., Schunemann C., Zakhidov A., Lussem B., Leo K., Org. Electron., 2012, 13, 58
Wakatsuki Y., Noda K., Wada Y., Toyabe T., J. Appl. Phys., 2011, 110, 054505
Brinkmann M., Graff S., Straupe C., Wittmann J. C., Chaumont C., Neusch F., Aziz A., Schaer M., Zuppiroli L., J. Phys. Chem. B, 2003, 107, 10531
Smerdon J. A., Bode M., Guisinger N. P., Guest J. R., Phys. Rev. B, 2011, 84, 1
Katsuta S., Miyagi D., Yamada H., Okujima T., Mori S., Nakayama K., Uno H., Org. Lett., 2011, 13, 1454
Sheraw C. D., Jackson T. N., Eaton D. L., Anthony J. E., Adv. Mater., 2003, 15, 2009
Yakuphanoglu F., Gunduz B., Synthetic. Metals, 2012, 162, 1210
Chai S., Wen S. H., Huang J. D., Han K. L., J. Comput. Chem., 2011, 32, 3218
Girlando A., Grisanti L., Masino M., Brillante A., Della Valle R. G., Venuti E., J. Chem. Phys., 2011, 135, 084701
Zimmerman P. M., Bell F., Casanova D., Head-Gordon M., J. Am. Chem. Soc., 2011, 133, 19944
Zubarev D. Yu., Robertson N., Domin D., McClean J., Wang J. H., Lester W. A., Whitesides R., You X. Q., Frenklach M., J. Phys. Chem. C, 2010, 114, 5429
You X. Q., Zubarev D. Y., Lester W. A. Jr., Frenklach M., J. Phys. Chem. A, 2011, 115, 14184
Mete E., Demiroğlu I., Danişman M. F., Ellialtioğlu Ş., J. Phys. Chem. C, 2010, 114, 2724
Yang G. C., Fang L., Tan K., Shi S. Q., Su Z. M., Wang R. S., Organometallics, 2007, 26, 2082
Sun S. L., Qin C. S., Qiu Y. Q., Yang G. C., Su Z. M., J. Organomet. Chem., 2009, 694, 1266
Buckingham A. D., Adv. Chem. Phys., 1967, 12, 107
Mclean A. D., Yoshimine M., J. Chem. Phys., 1967, 47, 1927
Wei W., Bai F. Q., Xia B. H., Chen H. B., Zhang H. X., Chem. Res. Chinese Universities, 2013, 29(5), 962
Zhang S. S., Shi L. L., Su Z. M., Ceng Y., Zhao L., Chem. Res. Chinese Universities, 2013, 29(2), 361
Wang F. F., Li Z. R., Wu D., Wang B. Q., Li Y., Li Z. J., Chen W., Yu G. T., Gu F. L., Aoki Y., J. Phys. Chem. B, 2008, 112, 1090
Xu H. L., Sun S. L., Muhammad S., Su Z. M., Theor. Chem. Acc., 2011, 128, 241
Maroulis G., Struct. Bond., 2012, 149, 95
Ma F., Li Z. R., Zhou Z. J., Wu D., Li Y., Wang Y. F., Li Z. S., J. Phys. Chem. C, 2010, 114, 11242
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A. Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., AlLaham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A., Gaussian 03, Revision D.02, Gaussian Inc., Wallingford CT, 2004
Oudar J. L., J. Chem. Phys., 1977, 67, 446