Structures and nonlinear optical properties of lithium-adsorbed polycyclic π-conjugated pentacene systems

Chemical Research in Chinese Universities - Tập 31 - Trang 261-269 - 2015
Shaochen Li1, Guangtao Yu1, Wei Chen1, Xuri Huang1
1State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, P. R. China

Tóm tắt

Structures and nonlinear optical(NLO) properties of eleven new Li n -P m (n=1–5) species were investigated in detail with the help of ab initio computation, in which one to the maximum five Li atoms are doped over the polycyclic π-conjugated pentacene. These Li-doped pentacene systems exhibit large adsorption energies(ca. 107.0–141.3 kJ/mol) and considerable first hyperpolarizabilities(even up to 4.1×104 a.u.), where the number of Li atoms, the doping site, and the distance between the neighboring Li atoms have important impacts on the β 0 value. In the doped pentacene systems with less Li atoms(one or two), the improvement of β 0 value can be attributed to the simple transfer of the charge from Li atom to pentacene. Differently, doped more Li atoms(three to five) can cause not only charge transfer but also excess electron, and this cooperation can endow the doped systems with the much larger first hyperpolarizabilities. These fascinating findings are advantageous for the design of new NLO materials based on the intriguing polycyclic π-conjugated systems.

Tài liệu tham khảo

Heck J., Dabek S., Meyer-Friedrichesn T., Wong H., Coord. Chem. Rev., 1999, 190–192, 1217 Kanis D. R., Ratner M. A., Marks T., Chem. Rev., 1994, 94, 195 Meyers F., Marder S. R., Pierce B. M., Bredas J. L., J. Am. Chem. Soc., 1994, 116, 10703 Ma N. N., Liu C. G., Qiu Y. Q., Sun S. L., Su Z. M., J. Comput. Chem., 2012, 33, 211 LeCours S. M., Guan H. W., DiMagno S. G., Wang C. H., Therien M. J., J. Am. Chem. Soc., 1996, 118, 1497 Priyadarshy S., Therien M. J., Beratan D. N., J. Am. Chem. Soc., 1996, 118, 1504 De la Torre G., Vaquez P., Agullo-Lopez F., Torres T., Chem. Rev., 2004, 104, 3723 Liu C. G., Guan W., Song P., Yan L. K., Su Z. M., Inorg. Chem., 2009, 48, 6548 Zhang T. G., Zhao Y., Asselberghs I., Persoons A., Clays K., Therien M. T., J. Am. Chem. Soc., 2005, 127, 9710 Tancrez N., Feuvrie C., Ledoux I., Zyss J., Toupet L., Bozec H. L., Maury O., J. Am. Chem. Soc., 2005, 127, 13474 Cornelis D., Franz E., Asselberghs I., Clays K., Verbiest T., Koeckelberghs G., J. Am. Chem. Soc., 2011, 133, 1317 Maury O., Viau L., Senechal K., Corre B., Guegan J. P., Renouard T., Ledoux I., Zyss J., Bozec L. H., Chem. Eur. J., 2004, 10, 4454 Lee S. H., Park J. R., Jeong M. Y., Kim H. M., Li S. J., Song J., Ham S., Jeon S. J., Cho B. R., Chem. Phys. Chem., 2006, 7, 206 Zhou Z. J., Yu G. T., Ma F., Huang X. R., Wu Z. J., Li Z. R., J. Mater. Chem. C, 2014, 2, 306 Yu G. T., Zhao X. G., Niu M., Huang X. R., Zhang H., Chen W., J. Mater. Chem. C, 2013, 1, 3833 Chen L. W., Yu G. T., Chen W., Tu C. Y., Zhao X. G., Huang X. R., Phys. Chem. Chem. Phys., 2014, 16, 10933 Tu C. Y., Yu G. T., Yang G. H., Zhao X. G., Chen W., Li S. C., Huang X. R., Phys. Chem. Chem. Phys., 2014, 16, 1597 Chen W., Li Z. R., Wu D., Li Y., Sun C. C., Gu F. L., J. Am. Chem. Soc., 2005, 127, 10977 Xu H. L., Li Z. R., Wu D., Wang B. Q., Li R. Y., Gu F. L., Aoki Y., J. Am. Chem. Soc., 2007, 129, 2967 Chen W., Li Z. R., Wu D., Li Y., Sun C. C., J. Phys. Chem. B, 2005, 109, 601 Muhammad S., Xu H. L., Liao Y., Kan Y. H., Su Z. M., J. Am. Chem. Soc., 2009, 131, 11833 Yu G. T., Huang X. R., Chen W., Sun C. C., J. Comput. Chem., 2011, 32, 2005 Zhou Z. J., Li H., Huang X. R., Wu Z. J., Ma F., Li Z. R., Comput. Theor. Chem., 2013, 1023, 99 Niu M., Yu G. T., Yang G. H., Chen W., Zhao X. G., Huang X. R., Inorg. Chem., 2014, 53, 349 Zhao X. G., Yu G. T., Huang X. R., Chen W., Niu M., J. Mol. Model., 2013, 19, 5601 Chen W., Yu G. T., Jin P., Li Z. R., Huang X. R., J. Comput. Theor. Nanosci., 2011, 8, 2482 Li S. C., Yu G. T., Chen W., Huang X. R., Chem. J. Chinese Universities, 2014, 35(11), 2390 Pramanik G., Miller P., Molecules., 2012, 17, 4625 Mondal R., Tönshoff C., Khon D., Neckers D. C., Bettinger H. F., J. Am. Chem. Soc., 2009, 131, 14281 Sakamoto Y., Suzuki T., Kobayashi M., Gao Y., Fukai Y., Inoue Y., Sato F., Tokito S., J. Am. Chem. Soc., 2004, 126, 8138 Kleemann H., Schunemann C., Zakhidov A., Lussem B., Leo K., Org. Electron., 2012, 13, 58 Wakatsuki Y., Noda K., Wada Y., Toyabe T., J. Appl. Phys., 2011, 110, 054505 Brinkmann M., Graff S., Straupe C., Wittmann J. C., Chaumont C., Neusch F., Aziz A., Schaer M., Zuppiroli L., J. Phys. Chem. B, 2003, 107, 10531 Smerdon J. A., Bode M., Guisinger N. P., Guest J. R., Phys. Rev. B, 2011, 84, 1 Katsuta S., Miyagi D., Yamada H., Okujima T., Mori S., Nakayama K., Uno H., Org. Lett., 2011, 13, 1454 Sheraw C. D., Jackson T. N., Eaton D. L., Anthony J. E., Adv. Mater., 2003, 15, 2009 Yakuphanoglu F., Gunduz B., Synthetic. Metals, 2012, 162, 1210 Chai S., Wen S. H., Huang J. D., Han K. L., J. Comput. Chem., 2011, 32, 3218 Girlando A., Grisanti L., Masino M., Brillante A., Della Valle R. G., Venuti E., J. Chem. Phys., 2011, 135, 084701 Zimmerman P. M., Bell F., Casanova D., Head-Gordon M., J. Am. Chem. Soc., 2011, 133, 19944 Zubarev D. Yu., Robertson N., Domin D., McClean J., Wang J. H., Lester W. A., Whitesides R., You X. Q., Frenklach M., J. Phys. Chem. C, 2010, 114, 5429 You X. Q., Zubarev D. Y., Lester W. A. Jr., Frenklach M., J. Phys. Chem. A, 2011, 115, 14184 Mete E., Demiroğlu I., Danişman M. F., Ellialtioğlu Ş., J. Phys. Chem. C, 2010, 114, 2724 Yang G. C., Fang L., Tan K., Shi S. Q., Su Z. M., Wang R. S., Organometallics, 2007, 26, 2082 Sun S. L., Qin C. S., Qiu Y. Q., Yang G. C., Su Z. M., J. Organomet. Chem., 2009, 694, 1266 Buckingham A. D., Adv. Chem. Phys., 1967, 12, 107 Mclean A. D., Yoshimine M., J. Chem. Phys., 1967, 47, 1927 Wei W., Bai F. Q., Xia B. H., Chen H. B., Zhang H. X., Chem. Res. Chinese Universities, 2013, 29(5), 962 Zhang S. S., Shi L. L., Su Z. M., Ceng Y., Zhao L., Chem. Res. Chinese Universities, 2013, 29(2), 361 Wang F. F., Li Z. R., Wu D., Wang B. Q., Li Y., Li Z. J., Chen W., Yu G. T., Gu F. L., Aoki Y., J. Phys. Chem. B, 2008, 112, 1090 Xu H. L., Sun S. L., Muhammad S., Su Z. M., Theor. Chem. Acc., 2011, 128, 241 Maroulis G., Struct. Bond., 2012, 149, 95 Ma F., Li Z. R., Zhou Z. J., Wu D., Li Y., Wang Y. F., Li Z. S., J. Phys. Chem. C, 2010, 114, 11242 Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A. Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., AlLaham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A., Gaussian 03, Revision D.02, Gaussian Inc., Wallingford CT, 2004 Oudar J. L., J. Chem. Phys., 1977, 67, 446