Structures and functions of reaction interfaces developed during solid-state dehydrations

Journal of Thermal Analysis - Tập 49 - Trang 1135-1145 - 1997
M. E. Brown1, A. K. Galwey2, G. G. T. Guarini3
1Department of Chemistry, Rhodes University, Grahamstown, South Africa
2School of Chemistry, Queen's University, Belfast, Northern Ireland
3Laboratorio di Chimica Fisica delle Interfasi, Università di Firenze, Firenze, Italy

Tóm tắt

The literature reveals that the mechanisms of some solid-state dehydrations are more complicated than has been generally accepted. Reactions at a thin advancing reactant-product interface provide the geometric models on which the most widely employed rate equations are based. For some systems, this “thin interface” model is a simplification of observed behaviour. Elimination of water from crystallographic sites may occur to a significant extent within a much thicker zone of reactant towards which the active interface is progressing. Consequently the region of chemical change may not coincide with the region of structural transformation. Limited initial dehydration may occur across all crystal faces prior to the onset of a nucleation and growth process that is usually regarded as the dominant rate process in the dehydrations of many large crystals. Experimental observations for solid-state dehydrations are discussed and reaction mechanisms with different rate controlling processes are distinguished. Studies of dehydrations have contributed substantially to the theory of solid-state reactivity, and advances in understanding may have wider application to other solid-state reactants.

Tài liệu tham khảo

M. E. Brown, D. Dollimore and A. K. Galwey, Comprehensive Chemical Kinetics, Vol. 22, Elsevier, Amsterdam 1980. R. M. Dell and V. J. Wheeler, Reactivity of Solids, Proc. 5th Int. Symp., Elsevier, Amsterdam 1965, p. 395. P. W. M. Jacobs and F. C. Tompkins, Chemistry of the Solid State, Butterworth, London 1955, Ch. 4. A. J. E. Welch, Chemistry of the Solid State, Butterworth, London 1955, Ch. 12. D. A. Dominey, H. Morley and D. A. Young, Trans. Faraday Soc., 61 (1965) 1246. A. K. Galwey, R. Spinicci and G. G. T. Guarini, Proc. R. Soc. London, A378 (1981) 477. Y. Masuda and Y. Ito, J. Thermal Anal., 38 (1992) 1793. L. Dei, G. G. T. Guarini and S. Piccini, J. Thermal Anal., 29 (1984) 755. G. G. T. Guarini and L. Dei, J. Chem. Soc., Faraday Trans. I, 79 (1983) 1599. G. G. T. Guarini and S. Piccini, J. Chem. Soc., Faraday Trans. I, 84 (1988) 331. A. K. Galwey and M. A. Mohamed, Thermochim. Acta, 121 (1987) 97. A. K. Galwey and L. Pöppl, Phil. Trans. R. Soc. London, A311 (1984) 159. G. G. T. Guarini and M. Rustici, React. Solids, 2 (1987) 381. T. Manfredini, G. C. Pellacani, A. Bonamartini-Corradi, L. P. Battaglia, J. Giusti, G. G. T. Guarini, R. D. Willett and D. X. West, Inorg. Chem., 29 (1990) 2221. N. J. Carr and A. K. Galwey, Proc. Roy. Soc. London, A404 (1986) 101. A. K. Galwey, G. M. Laverty, N. A. Baranov and V. B. Okhotnikov, Phil. Trans. R. Soc London, A347 (1994) 139, 157. M. E. Brown, A. K. Galwey, M. A. Mohamed and H. Tanaka, Thermochim. Acta, 235 (1994) 255. A. K. Galwey, S. A. Lyle and S. A. A. Mansour, Thermochim. Acta, 235 (1994) 239. A. K. Galwey and S. A. A. Mansour, Thermochim. Acta, 228 (1993) 379. A. K. Galwey, L. Pöppl and S. Rajam, J. Chem. Soc., Faraday Trans. I, 79 (1983) 2143. V. B. Okhotnikov, I. P. Babicheva, A. V. Musicantov and T. N. Aleksandrova, React. Solids, 7 (1989) 273. V. B. Okhotnikov, S. B. Petrov, B. I. Yacobson and N. Z. Lyakov, React. Solids, 2 (1987) 359. V. V. Boldyrev, Y. A. Gaponov, N. Z. Lyakov, A. A. Politov, B. P. Tolochko, T. P. Shakhtshneider and M. A. Sheromov, Nucl. Inst. Methods Phys. Res., A261 (1987) 192. A. K. Galwey and G. G. T. Guarini, Proc. R. Soc. London, A441 (1993) 313. G. G. T. Guarini, J. Thermal Anal., 41 (1994) 287. G. G. T. Guarini and M. Rustici, J. Thermal Anal., 34 (1988) 487. D. Beruto, L. Barco, A. W. Searcy and G. Spinolo, J. Am. Ceram. Soc., 63 (1980) 439. A. K. Galwey and G. M. Laverty, Thermochim. Acta, 228 (1993) 359. L. Stoch, J. Thermal Anal., 37 (1991) 1415. G. G. T. Guarini and L. Dei, Thermochim. Acta, 269/270 (1995) 79; see also: 250 (1995) 85. J. M. Thomas and G. D. Renshaw, J. Chem. Soc. A, (1967) 2058. J. M. Thomas and G. D. Renshaw, J. Chem. Soc. A, (1969) 2749, 2753, 2756. D. B. Sheen and G. N. Sherwood, Mater. Sci. Monographs, 28A (1985) 93. G. G. T. Guarini, Colloids and Surfaces, 59 (1991) 83. S. Shimada, Thermochim. Acta, 253 (1995) 317. J. Sawkill, Proc. R. Soc. London, A229 (1955) 135.