Structure, strength, and electric conductivity of a Cu-Cr copper-based alloy subjected to severe plastic deformation

Physics of Metals and Metallography - Tập 116 Số 2 - Trang 209-218 - 2015
Р. К. Исламгалиев1, К. М. Нестеров1, Ruslan Z. Valiev1
1Ufa State Aviation Technical University, Ufa, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

O. E. Osintsev and V. N. Fedorov, Copper and Copper Alloys (Mashinostroenie, Moscow, 2004) [in Russian].

R. Zauter and D. V. Kudashov, “Precipitation hardened high copper alloys for connector pins made of wire,” Proc. 23rd Int. Conf. on Electrical Contacts, Sendai, Japan, June 6–9, 2006, pp. 257–261.

Y. Champion, J-P. Couzinié, S. Tusseau-Nenez, Y. Bréchet, R. K. Islamgaliev, and R. Z. Valiev, “High strength and electrical conductivity of UFG copper alloys,” Mater. Sci. Forum 667–669, 755–760 (2011).

R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Prog. Mater. Sci. 45, 103–189 (2000).

R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials (Akademkniga, Moscow, 2007) [in Russian].

C. Watanabe, R. Monzen, and K. Tazaki, “Mechanical properties of Cu-Cr system alloys with and without Zr and Ag,” J. Mater. Sci. 43, 813–819 (2008).

Y. Champion and Y. Brechet, “Effect of grain size reduction and geometrical confinement in fine grained copper: Potential applications as a material for reversible electrical contacts,” Adv. Eng. Mat. 12, 798–802 (2010).

K. Hanazaki, N. Shigeiri, and N. Tsuji, “Change in microstructures and mechanical properties during deep wire drawing of copper,” Mater. Sci. Eng., A 527, 5699–5707 (2010).

N. Takata, S. H. Lee, and N. Tsuji, “Ultrafine grained copper alloy sheets having both high strength and high electric conductivity,” Mater. Lett. 63, 1757–1760 (2009).

V. Z. Spuskanyuk, A. A. Davidenko, A. N. Gangalo, L. F. Sennikova, M. A. Tikhonovskii, and D. V. Spiridonov, “Achievement of copper-wire record level by severe plastic deformation methods,” Fiz. Tekh. Vys. Davl. 20, 114–122 (2010).

R. K. Islamgaliev, K. Pekala, M. Pekala, and R. Z. Valiev, “The determination of the grain boundary width of ultrafine grained copper and nickel from electrical resistance measurements,” Phys. Status Solidi A 162, 559–566 (1997).

B. Mingler, O. B. Kulyasova, R. K. Islamgaliev, G. Korb, H. P. Karnthaler, and M. J. Zehetbauer, “DSC and TEM analysis of lattice defects governing the mechanical properties of an ECAP-processed magnesium alloy,” J. Mater. Sci. 42, 1477–1482 (2007).

O. A. Shmatkov and Yu. V. Usov, Structure and Properties of Metals and Alloys. Electrical and Magnetic Properties of Metals (Naukova Dumka, Kiev, 1987) [in Russian].

A. A. Lukhvich, Effect of Defects on Electrical Properties of Metals (Nauka i Tekhnika, Minsk, 1976) [in Russian].

R. Z. Valiev, M. Yu. Murashkin, E. V. Bobruk, and G. I. Raab, “Grain refinement in the Al alloys subjected to the new SPD technique,” Mater. Trans. 50, 87–91 (2009).

Yu. R. Kolobov and R. Z. Valiev, Grain-Boundary Diffusion and Properties of Nanostructured Materials (Nauka, Novosibirsk, 2001) [in Russian].

S. G. Jia, M. S. Zheng, P. Liu, F. Z. Ren, B. H. Tian, G. S. Zhou, and H. F. Lou, “Aging properties studies in a Cu-Ag-Cr alloy,” Mater. Sci. Eng., A 419, 8–11 (2006).

I. N. Sabirov, N. F. Yunusova, R. K. Islamgaliev, and R. Z. Valiev, “High-strength state of a nanostructured aluminum alloy produced by severe plastic deformation,” Phys. Met. Metallogr. 93, 94–99 (2002).

Y. M. Wang and E. Ma, “Three strategies to achieve uniform tensile deformation in a nanostructured metal,” Acta Mater. 52, 1699–1709 (2004).