Structure of thrombospondin type 3 repeats in bacterial outer membrane protein A reveals its intra-repeat disulfide bond-dependent calcium-binding capability
Tài liệu tham khảo
Permyakov, 2009, Cell signaling: beyond cytosolic calcium in eukaryotes, J. Inorg. Biochem., 103, 77, 10.1016/j.jinorgbio.2008.09.006
Berridge, 2003, Calcium signalling: dynamics: homeostasis and remodelling, Nat. Rev. Mol. Cell Biol., 4, 517, 10.1038/nrm1155
Dominguez, 2015, Calcium binding proteins and calcium signaling in prokaryotes, Cell Calcium, 57, 151, 10.1016/j.ceca.2014.12.006
Gangola, 1987, Maintenance of intracellular calcium in Escherichia coli, J. Biol. Chem., 262, 12570, 10.1016/S0021-9258(18)45243-X
Jones, 1999, Slow changes in cytosolic free Ca2+ in Escherichia coli highlight two putative influx mechanisms in response to changes in extracellular calcium, Cell Calcium, 25, 265, 10.1054/ceca.1999.0028
Torrecilla, 2000, Use of recombinant aequorin to study calcium homeostasis and monitor calcium transients in response to heat and cold shock in cyanobacteria, Plant Physiol., 123, 161, 10.1104/pp.123.1.161
Clapham, 2007, Calcium signaling, Cell, 131, 1047, 10.1016/j.cell.2007.11.028
Chang, 1986, Electron probe analysis, X-ray mapping, and electron energy-loss spectroscopy of calcium magnesium, and monovalent ions in log-phase and in dividing Escherichia coli B cells, J. Bacteriol., 167, 935, 10.1128/jb.167.3.935-939.1986
Jones, 2002, Direct measurement of free Ca(2+) shows different regulation of Ca(2+) between the periplasm and the cytosol of Escherichia coli, Cell Calcium, 32, 183, 10.1016/S0143416002001537
Tossavainen, 2003, NMR solution structure of calerythrin: an EF-hand calcium-binding protein from Saccharopolyspora erythraea, Eur. J. Biochem., 270, 2505, 10.1046/j.1432-1033.2003.03623.x
Lytle, 2001, Solution structure of a type I dockerin domain a novel prokaryotic, extracellular calcium-binding domain, J. Mol. Biol., 307, 745, 10.1006/jmbi.2001.4522
Aghajari, 2003, Crystal structures of a psychrophilic metalloprotease reveal new insights into catalysis by cold-adapted proteases, Proteins, 50, 636, 10.1002/prot.10264
Barnwal, 2009, Solution structure and calcium-binding properties of M-crystallin: a primordial betagamma-crystallin from archaea, J. Mol. Biol., 386, 675, 10.1016/j.jmb.2008.12.058
Kvansakul, 2004, Structure of a thrombospondin C-terminal fragment reveals a novel calcium core in the type 3 repeats, EMBO J., 23, 1223, 10.1038/sj.emboj.7600166
Rigden, 2004, The DxDxDG motif for calcium binding: multiple structural contexts and implications for evolution, J. Mol. Biol., 343, 971, 10.1016/j.jmb.2004.08.077
Armstrong, 2003, Thrombospondins 1 and 2 function as inhibitors of angiogenesis, Matrix Biol., 22, 63, 10.1016/S0945-053X(03)00005-2
Adams, 2011, The thrombospondins, Cold Spring Harb. Perspect. Biol., 3, a009712, 10.1101/cshperspect.a009712
Tan, 2009, The crystal structure of the signature domain of cartilage oligomeric matrix protein: implications for collagen, glycosaminoglycan and integrin binding, FASEB J., 23, 2490, 10.1096/fj.08-128090
Carlson, 2005, Structure of the calcium-rich signature domain of human thrombospondin-2, Nat. Struct. Mol. Biol., 12, 910, 10.1038/nsmb997
Feller, 2003, Psychrophilic enzymes: hot topics in cold adaptation, Nat. Rev. Microbiol., 1, 200, 10.1038/nrmicro773
Violot, 2005, Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering, J. Mol. Biol., 348, 1211, 10.1016/j.jmb.2005.03.026
Sonan, 2007, The linker region plays a key role in the adaptation to cold of the cellulase from an Antarctic bacterium, Biochem. J, 407, 293, 10.1042/BJ20070640
Koebnik, 2000, Structure and function of bacterial outer membrane proteins: barrels in a nutshell, Mol. Microbiol., 37, 239, 10.1046/j.1365-2958.2000.01983.x
Krishnan, 2012, Outer membrane protein A and OprF: versatile roles in Gram-negative bacterial infections, FEBS J., 279, 919, 10.1111/j.1742-4658.2012.08482.x
Confer, 2013, The OmpA family of proteins: roles in bacterial pathogenesis and immunity, Vet. Microbiol., 163, 207, 10.1016/j.vetmic.2012.08.019
Pautsch, 1998, Structure of the outer membrane protein A transmembrane domain, Nat. Struct. Biol., 5, 1013, 10.1038/2983
Pautsch, 2000, High-resolution structure of the OmpA membrane domain, J. Mol. Biol., 298, 273, 10.1006/jmbi.2000.3671
Park, 2012, Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the gram-negative bacterial outer membrane, FASEB J., 26, 219, 10.1096/fj.11-188425
Abergel, 2001, Crystallization and preliminary crystallographic study of the peptidoglycan-associated lipoprotein from Escherichia coli, Acta Crystallogr. D Biol. Crystallogr., 57, 317, 10.1107/S0907444900019739
Leadbetter, 1979, Capnocytophaga: new genus of gram-negative gliding bacteria. I. General characteristics: taxonomic considerations and significance, Arch. Microbiol., 122, 9, 10.1007/BF00408040
Zheng, 2014, Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server, Nat. Protoc., 9, 156, 10.1038/nprot.2013.172
Krissinel, 2007, Inference of macromolecular assemblies from crystalline state, J. Mol. Biol., 372, 774, 10.1016/j.jmb.2007.05.022
Zondlo, 2013, Aromatic-proline interactions: electronically tunable CH/pi interactions, Acc. Chem. Res., 46, 1039, 10.1021/ar300087y
Adams, 2004, Functions of the conserved thrombospondin carboxy-terminal cassette in cell-extracellular matrix interactions and signaling, Int. J. Biochem. Cell Biol., 36, 1102, 10.1016/j.biocel.2004.01.022
Lawler, 1982, Evidence for calcium-sensitive structure in platelet thrombospondin: isolation and partial characterization of thrombospondin in the presence of calcium, J. Biol. Chem., 257, 12257, 10.1016/S0021-9258(18)33709-8
Lawler, 1985, The structure of human platelet thrombospondin, J. Biol. Chem., 260, 3762, 10.1016/S0021-9258(19)83689-X
Misenheimer, 1995, Calcium ion binding to thrombospondin 1, J. Biol. Chem., 270, 1729, 10.1074/jbc.270.4.1729
Womack, 1989, Calcium requirement for gliding motility in myxobacteria, J. Bacteriol., 171, 6093, 10.1128/jb.171.11.6093-6096.1989
Lauritzen, 1991, BPTI and N-terminal extended analogues generated by factor Xa cleavage and cathepsin C trimming of a fusion protein expressed in Escherichia coli, Protein Expr. Purif., 2, 372, 10.1016/1046-5928(91)90096-2
Minor, 2006, HKL-3000: the integration of data reduction and structure solution--from diffraction images to an initial model in minutes Acta crystallographica. Section D, Biological crystallography., 62, 859, 10.1107/S0907444906019949
McCoy, 2007, Phaser crystallographic software, J. Appl. Crystallogr., 40, 658, 10.1107/S0021889807021206
Emsley, 2004, Coot: model-building tools for molecular graphics Acta crystallographica. Section D, Biological crystallography., 60, 2126, 10.1107/S0907444904019158
Afonine, 2012, Towards automated crystallographic structure refinement with phenix.refine, Acta Crystallogr. D Biol. Crystallogr., 68, 352, 10.1107/S0907444912001308
Phillips, 2005, Scalable molecular dynamics with NAMD, J. Comput. Chem., 26, 1781, 10.1002/jcc.20289
Humphrey, 1996, VMD: visual molecular dynamics, J. Mol. Graph., 14, 33, 10.1016/0263-7855(96)00018-5
Mackerell, 2000, Development and current status of the CHARMM force field for nucleic acids, Biopolymers, 56, 257, 10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W
MacKerell, 1998, All-Atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. B, 102, 3586, 10.1021/jp973084f
Price, 2004, A modified TIP3P water potential for simulation with Ewald summation, J. Chem. Phys., 121, 10096, 10.1063/1.1808117
Darden, 1993, Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems, J. Chem. Phys., 98, 10089, 10.1063/1.464397
