Structure of the dimeric N-glycosylated form of fungal β-N-acetylhexosaminidase revealed by computer modeling, vibrational spectroscopy, and biochemical studies
Tóm tắt
Fungal β-N-acetylhexosaminidases catalyze the hydrolysis of chitobiose into its constituent monosaccharides. These enzymes are physiologically important during the life cycle of the fungus for the formation of septa, germ tubes and fruit-bodies. Crystal structures are known for two monomeric bacterial enzymes and the dimeric human lysosomal β-N-acetylhexosaminidase. The fungal β-N-acetylhexosaminidases are robust enzymes commonly used in chemoenzymatic syntheses of oligosaccharides. The enzyme from Aspergillus oryzae was purified and its sequence was determined. The complete primary structure of the fungal β-N-acetylhexosaminidase from Aspergillus oryzae CCF1066 was used to construct molecular models of the catalytic subunit of the enzyme, the enzyme dimer, and the N-glycosylated dimer. Experimental data were obtained from infrared and Raman spectroscopy, and biochemical studies of the native and deglycosylated enzyme, and are in good agreement with the models. Enzyme deglycosylated under native conditions displays identical kinetic parameters but is significantly less stable in acidic conditions, consistent with model predictions. The molecular model of the deglycosylated enzyme was solvated and a molecular dynamics simulation was run over 20 ns. The molecular model is able to bind the natural substrate – chitobiose with a stable value of binding energy during the molecular dynamics simulation. Whereas the intracellular bacterial β-N-acetylhexosaminidases are monomeric, the extracellular secreted enzymes of fungi and humans occur as dimers. Dimerization of the fungal β-N-acetylhexosaminidase appears to be a reversible process that is strictly pH dependent. Oligosaccharide moieties may also participate in the dimerization process that might represent a unique feature of the exclusively extracellular enzymes. Deglycosylation had only limited effect on enzyme activity, but it significantly affected enzyme stability in acidic conditions. Dimerization and N-glycosylation are the enzyme's strategy for catalytic subunit stabilization. The disulfide bridge that connects Cys448 with Cys483 stabilizes a hinge region in a flexible loop close to the active site, which is an exclusive feature of the fungal enzymes, neither present in bacterial nor mammalian structures. This loop may play the role of a substrate binding site lid, anchored by a disulphide bridge that prevents the substrate binding site from being influenced by the flexible motion of the loop.
Tài liệu tham khảo
Gooday GW, Zhu WY, O'Donell RW: What are the roles of chitinases in the growing fungus? FEMS Microbiol Lett 1992, 100: 387–392. 10.1111/j.1574-6968.1992.tb05730.x
Bulawa CE: Genetics and molecular biology of chitin synthesis in fungi. Annu Rev Microbiol 1993, 47: 505–534. 10.1146/annurev.mi.47.100193.002445
Cheng Q, Li H, Merdek K, Park JT: Molecular characterization of the β- N -acetylglucosaminidase of Escherichia coli and its role in cell wall recycling. J Bacteriol 2000, 182: 4836–4840. 10.1128/JB.182.17.4836-4840.2000
Cohen E: Chitin synthesis and inhibition: a revisit. Pest Manag Sci 2001, 57: 946–950. 10.1002/ps.363
Mahuran DJ: Biochemical consequences of mutations causing the GM2 gangliosidoses. Biochim Biophys Acta 1999, 1455: 105–138.
Křen V, Ščigelová M, Přikrylová V, Havlíček V, Sedmera P: Enzymatic-synthesis of β- N -acetylhexosaminides of ergot alkaloids. Biocatalysis 1994, 10: 118–193.
Rajnochová E, Dvořáková J, Huňková Z, Křen V: Reverse hydrolysis catalysed by β- N -acetylhexosaminidase from Aspergillus oryzae . Biotechnol Lett 1997, 19: 869–872. 10.1023/A:1018385520155
Krist P, Herkommerová-Rajnochová E, Rauvolfová J, Semeňuk T, Vavrušková P, Pavlíček J, Bezouška K, Petruš L, Křen V: Toward an optimal oligosaccharide ligand for rat natural killer cell activation receptor NKR-P1. Biochem Biophys Res Commun 2001, 287: 11–20. 10.1006/bbrc.2001.5537
Weignerová L, Vavrušková P, Pišvejcová A, Thiem J, Křen V: Fungal β- N -acetylhexosaminidases with high β- N -acetylgalactosaminidase activity and their use for synthesis of β-GalNAc-containing oligosaccharides. Carbohydr Res 2003, 338: 1003–1008. 10.1016/S0008-6215(03)00044-2
Tews I, Perrakis A, Oppenheimer A, Dauter Z, Wilson KS, Vorgias CE: Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay-Sachs disease. Nat Struct Biol 1996, 3: 638–648. 10.1038/nsb0796-638
Prag G, Papanikolau Y, Tavlas G, Vorgaris CE, Petratos K, Oppenheim AB: Structures of chitobiase mutants complexed with the substrate Di- N -acetyl-d-glucosamine: the catalytic role of the conserved acidic pair, aspartate 539 and glutamate 540. J Mol Biol 2000, 300: 611–617. 10.1006/jmbi.2000.3906
Mark BL, Vocadlo DJ, Zhao D, Knapp S, Withers SG, James MNG: Crystallographic evidence for substrate-assisted catalysis in a bacterial β-hexosaminidase. J Biol Chem 2001, 276: 10330–10337. 10.1074/jbc.M011067200
Williams SJ, Mark BL, Vocadlo DJ, James MNG, Withers SG: Aspartate 313 in the Streptomyces plicatus hexosaminidase plays a critical role in substrate-assisted catalysis by orienting the 2-acetamido group and stabilizing the transition state. J Biol Chem 2002, 277: 40055–40065. 10.1074/jbc.M206481200
Maier T, Strater N, Schuette CG, Klingenstein R, Sandhoff K, Saenger W: The X-ray crystal structure of human β-hexosaminidase B provides new insights into Sandhoff disease. J Mol Biol 2003, 328: 669–681. 10.1016/S0022-2836(03)00311-5
Huňková Z, Křen V, Ščigelová M, Weignerová L, Scheel O, Thiem J: Induction of β- N -acetylhexosaminidase in Aspergillus oryzae . Biotechnol Lett 1996, 18: 725–730. 10.1007/BF00130773
Aspergillus oryzae beta-N-acetylhexosaminidase precursor (hexA) gene, complete cds[http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=29242776]
Hušáková L, Herkommerová-Rajnochová E, Semeňuk T, Kuzma M, Rauvolfová J, Přikrylová V, Ettrich R, Plíhal O, Bezouška K, Křen V: Enzymatic discrimination of 2-acetamido-2-deoxy-D-mannopyranose-containing disaccharides using β- N -acetylhexosaminidases. Adv Synth Catal 2003, 345: 735–742. 10.1002/adsc.200303002
Mark BL, Vocadlo DJ, Zhao D, Knapp S, Withers SG, James MNG: Biochemical and structural assessment of the 1- N -azasugar GalNAc-isofagomine as a potent family 20 β- N -acetylhexosaminidase inhibitor. J Biol Chem 2001, 276: 42131–42137. 10.1074/jbc.M107154200
Mark BL, Mahuran DJ, Cherney MM, Zhao D, Knapp S, James MNG: Crystal structure of human β-hexosaminidase B: understanding the molecular basis of Sandhoff and Tay-Sachs disease. J Mol Biol 2003, 327: 1093–1109. 10.1016/S0022-2836(03)00216-X
Plíhal O, Sklenář J, Kmoníčková J, Man P, Pompach P, Havlíček V, Křen V, Bezouška K: N -glycosylated catalytic unit meets O -glycosylated propeptide: complex protein architecture in a fungal hexosaminidase. Biochem Soc Trans 2004, 32: 764–765. 10.1042/BST0320764
Lemieux MJ, Mark BL, Cherney MM, Withers SG, Mahuran DJ, James MNG: Crystallographic structure of human β-hexosaminidase A: interpretation of Tay-Sachs mutations and loss of G M2 ganglioside hydrolysis. J Mol Biol 2006, 359: 913–929. 10.1016/j.jmb.2006.04.004
Bařinka C, Šácha P, Sklenář J, Man P, Bezouška K, Slusher BS, Konvalinka J: Identification of the N -glycosylation sites on glutamate carboxypeptidase II necessary for proteolytic activity. Protein Sci 2004, 13: 1627–1635. 10.1110/ps.04622104
Gonzalez J, Takao T, Hori H, Besada V, Rodriguez R, Padron G, Shimonishi Y: A method for determination of N -glycosylation sites in glycoproteins by collision-induced dissociation analysis in fast atom bombardment mass spectrometry: identification of the positions of carbohydrate-linked asparagine in recombinant alpha-amylase by treatment with peptide- N -glycosidase F in 18O-labeled water. Anal Biochem 1992, 205: 151–158. 10.1016/0003-2697(92)90592-U
Novák P, Man P, Pompach P, Hofbauerová K, Bezouška K: Straightforward Determination of Disulfide Linkages in Proteins: The Case of β- N -acetyl-Hexosaminidase from Aspergillus oryzae . Proceedings of the ASMS Conference on Mass Spectrometry and Allied Topics 2006, 54: 540.
Arrondo JLR, Goñi FM: Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog Biophys Mol Biol 1999, 72: 367–405. 10.1016/S0079-6107(99)00007-3
Fabian H, Mäntele W: Handbook of Vibrational Spectroscopy. Edited by: Chalmers JM, Griffiths PR. Chichester: John Wiley & Sons Ltd; 2002:3399–3425.
Yamada N, Ariga K, Naito M, Matsubara K, Koyama E: Regulation of β-sheet structures within amyloid-like β-sheet assemblage from tripeptide derivatives. J Am Chem Soc 1998, 120: 12192–12199. 10.1021/ja981363q
Van Wart HE, Scheraga HA: Agreement with the disulfide stretching frequency-conformation correlation of Sugeta, Go, and Miyazawa. Proc Natl Acad Sci USA 1986, 83: 3064–3067. 10.1073/pnas.83.10.3064
Siamwiza MN, Lord RC, Chen MC, Takamatsu T, Harada I, Matsura H, Shimanouchi T: Interpretation of the doublet at 850 and 830 cm-1in the Raman spectra of tyrosyl residues in proteins and certain model compounds. Biochemistry 1975, 14: 4870–4876. 10.1021/bi00693a014
Ettrich R, Brandt W, Kopecký V Jr, Baumruk V, Hofbauerová K, Pavlíček Z: Study of chaperone-like activity of human haptoglobin: conformational changes under heat shock conditions and localization of interaction sites. Biol Chem 2002, 383: 1667–1676. 10.1515/BC.2002.187
Joseph D, Petsko GA, Karplus M: Anatomy of a conformational change: hinged "lid" motion of the triosephosphate isomerase loop. Science 1990, 249: 1425–1428. 10.1126/science.2402636
Pakhomova S, Kobayashi M, Buck J, Newcomer ME: A helical lid converts a sulfotransferase to a dehydratase. Nat Struct Biol 2001, 8: 447–451. 10.1038/87617
Bustos-Jaimes I, Sosa-Peinado A, Rudino-Pinera E, Horjales E, Calcagno ML: On the role of the conformational flexibility of the active-site lid on the allosteric kinetics of glucosamine-6-phosphate deaminase. J Mol Biol 2002, 319: 183–189. 10.1016/S0022-2836(02)00096-7
Brocca S, Secundo F, Ossola M, Alberghina L, Carrera G, Lotti M: Sequence of the lid affects activity and specificity of Candida rugosa lipase isoenzymes. Protein Sci 2003, 12: 2312–2319. 10.1110/ps.0304003
Pfeiffer G, Strube KH, Schmidt M, Geyer R: Glycosylation of two recombinant human uterine tissue plasminogen activator variants carrying an additional N -glycosylation site in the epidermal-growth-factor-like domain. Eur J Biochem 1994, 219: 331–348. 10.1111/j.1432-1033.1994.tb19945.x
Hogg T, Kutá-Smatanová I, Bezouška K, Ulbrich N, Hilgenfeld R: Sugar-mediated lattice contacts in crystals of a plant glycoprotein. Acta Crystallogr D Biol Crystallogr 2002, 58: 1734–1739. 10.1107/S0907444902014506
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucl Acids Res 2000, 28: 235–242. 10.1093/nar/28.1.235
Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 1997, 18: 2714–2723. 10.1002/elps.1150181505
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 1997, 25: 4876–4882. 10.1093/nar/25.24.4876
Sali A, Blundell TL: Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993, 234: 779–815. 10.1006/jmbi.1993.1626
Laskowski RA, McArthur MW, Moss DS, Thornton JM: PROCHECK – a program to check the stereochemical quality of protein structures. J Appl Crystallog 1993, 26: 283–291. 10.1107/S0021889892009944
Berendsen HJC, van der Spoel D, van Drunen R: GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 1995, 91: 43–56. 10.1016/0010-4655(95)00042-E
Lindahl E, Hess B, van der Spoel D: GROMACS 3.0: A package for molecular simulation and trajectory analysis. J Mol Modell 2001, 7: 306–317.
Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR: Molecular-dynamics with coupling to an external bath. J Chem Phys 1984, 81: 3684–3690. 10.1063/1.448118
Bohne A, Lang E, von der Lieth CW: W3-SWEET: Carbohydrate modeling by Internet. J Mol Model 1998, 4: 33–43. 10.1007/s008940050068
Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G: Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins 2004, 57: 678–683. 10.1002/prot.20251
Essman U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG: A smooth particle mesh Ewald method. J Chem Phys 1995, 103: 8577–8593. 10.1063/1.470117
Bultinck P, De Winter H, Langenaeker W, Tollenare J: Computational medicinal chemistry for drug discovery. CRC Press; 2003.
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72: 248–254. 10.1016/0003-2697(76)90527-3
Li SC, Li YT: Studies on the glycosidases of jack bean meal. 3. Crystallization and properties of β- N -acetylhexosaminidase. J Biol Chem 1970, 245: 5153–5160.
Packer NH, Lawson MA, Jardine DR, Redmond JW: A general approach to desalting oligosaccharides released from glycoproteins. Glycoconj J 1998, 15: 737–747. 10.1023/A:1006983125913
Harvey DJ: Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev 1999, 18: 349–450. 10.1002/(SICI)1098-2787(1999)18:6<349::AID-MAS1>3.0.CO;2-H
Dousseau F, Therrien M, Pézolet M: On the spectral substraction of water from the FT-IR spectra of aqueous-solutions of proteins. Appl Spectrosc 1989, 43: 538–542. 10.1366/0003702894202814
Williams RW: Protein secondary structure analysis using Raman amide I and amide III spectra. Methods Enzymol 1986, 130: 311–331.
Dousseau F, Pézolet M: Determination of the secondary structure content of proteins in aqueous solutions from their amide I and amide II infrared bands. Comparison between classical and partial least-squares methods. Biochemistry 1990, 29: 8771–8779. 10.1021/bi00489a038