Structure of the EndoMS-DNA Complex as Mismatch Restriction Endonuclease
Tài liệu tham khảo
Adams, 2010, PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. D Biol. Crystallogr., 66, 213, 10.1107/S0907444909052925
Aggarwal, 1995, Structure and function of restriction endonucleases, Curr. Opin. Struct. Biol., 5, 11, 10.1016/0959-440X(95)80004-K
Aravind, 2000, SURVEY AND SUMMARY: Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories, Nucleic Acids Res., 28, 3417, 10.1093/nar/28.18.3417
Au, 1988, Escherichia coli mutY gene product is required for specific A-G–--C.G mismatch correction, Proc. Natl. Acad. Sci. USA, 85, 9163, 10.1073/pnas.85.23.9163
Barnes, 2004, Repair and genetic consequences of endogenous DNA base damage in mammalian cells, Annu. Rev. Genet., 38, 445, 10.1146/annurev.genet.38.072902.092448
Barrett, 1999, Crystal structure of a thwarted mismatch glycosylase DNA repair complex, EMBO J., 18, 6599, 10.1093/emboj/18.23.6599
Battye, 2011, iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM, Acta Crystallogr. D Biol. Crystallogr., 67, 271, 10.1107/S0907444910048675
Berman, 2003, Announcing the worldwide protein Data Bank, Nat. Struct. Biol., 10, 980, 10.1038/nsb1203-980
Bochtler, 2006, Nucleotide flips determine the specificity of the Ecl18kI restriction endonuclease, EMBO J., 25, 2219, 10.1038/sj.emboj.7601096
Busch, 2010, MutS and MutL are dispensable for maintenance of the genomic mutation rate in the halophilic archaeon Halobacterium salinarum NRC-1, PLoS One, 5, e9045, 10.1371/journal.pone.0009045
Creze, 2011, Structure and function of a novel endonuclease acting on branched DNA substrates, Biochem. Soc. Trans., 39, 145, 10.1042/BST0390145
David, 2007, Base-excision repair of oxidative DNA damage, Nature, 447, 941, 10.1038/nature05978
Devos, 2007, Crystal structure of bacteriophage T4 5' nuclease in complex with a branched DNA reveals how flap endonuclease-1 family nucleases bind their substrates, J. Biol. Chem., 282, 31713, 10.1074/jbc.M703209200
Drew, 1981, Structure of a B-DNA dodecamer: conformation and dynamics, Proc. Natl. Acad. Sci. USA, 78, 2179, 10.1073/pnas.78.4.2179
Egel, 2008, Spo11 and the formation of DNA double-strand breaks in Meiosis, 81
Emsley, 2004, Features and development of coot, Acta Crystallogr. D Biol. Crystallogr., 66, 486, 10.1107/S0907444910007493
Franceschini, 2012, STRING v9.1: protein-protein interaction networks, with increased coverage and integration, Nucleic Acids Res., 41, D808, 10.1093/nar/gks1094
Fromme, 2004, Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase, Nature, 427, 652, 10.1038/nature02306
Fromme, 2004, DNA glycosylase recognition and catalysis, Curr. Opin. Struct. Biol., 14, 43, 10.1016/j.sbi.2004.01.003
Fukui, 2013, Thermostable mismatch-recognizing protein MutS suppresses nonspecific amplification during polymerase chain reaction (PCR), Int. J. Mol. Sci., 14, 6436, 10.3390/ijms14036436
Georgescu, 2008, Structure of a sliding clamp on DNA, Cell, 132, 43, 10.1016/j.cell.2007.11.045
Grogan, 2004, Stability and repair of DNA in hyperthermophilic Archaea, Curr. Issues Mol. Biol., 6, 137
Grogan, 2001, Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius, Proc. Natl. Acad. Sci. USA, 98, 7928, 10.1073/pnas.141113098
Guan, 1998, MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily, Nat. Struct. Biol., 5, 1058, 10.1038/4168
Haber, 1997, A super new twist on the initiation of meiotic recombination, Cell, 89, 163, 10.1016/S0092-8674(00)80194-4
Hildenbrand, 2011, Genome copy numbers and gene conversion in methanogenic archaea, J. Bacteriol., 193, 734, 10.1128/JB.01016-10
Horst, 1996, Counteracting the mutagenic effect of hydrolytic deamination of DNA 5-methylcytosine residues at high temperature: DNA mismatch N-glycosylase Mig.Mth of the thermophilic archaeon Methanobacterium thermoautotrophicum THF, EMBO J., 15, 5459, 10.1002/j.1460-2075.1996.tb00929.x
Ishino, 2016, Identification of a mismatch-specific endonuclease in hyperthermophilic archaea, Nucleic Acids Res., 44, 2977, 10.1093/nar/gkw153
Iyer, 2006, DNA mismatch repair: functions and mechanisms, Chem. Rev., 106, 302, 10.1021/cr0404794
Jacobs, 1997, Rates of spontaneous mutation in an archaeon from geothermal environments, J. Bacteriol., 179, 3298, 10.1128/jb.179.10.3298-3303.1997
Kelman, 2005, Archaeal DNA replication and repair, Curr. Opin. Microbiol., 8, 669, 10.1016/j.mib.2005.10.001
Laskowski, 1993, Main-chain bond lengths and bond angles in protein structures, J. Mol. Biol., 231, 1049, 10.1006/jmbi.1993.1351
Li, 2008, Mechanisms and functions of DNA mismatch repair, Cell Res., 18, 85, 10.1038/cr.2007.115
Lishanski, 1994, Mutation detection by mismatch binding protein, MutS, in amplified DNA: application to the cystic fibrosis gene, Proc. Natl. Acad. Sci. USA, 91, 2674, 10.1073/pnas.91.7.2674
MacNeill, 2011, Protein-protein interactions in the archaeal core replisome, Biochem. Soc. Trans., 39, 163, 10.1042/BST0390163
Maga, 2003, Proliferating cell nuclear antigen (PCNA): a dancer with many partners, J. Cell Sci., 116, 3051, 10.1242/jcs.00653
Matsumiya, 2002, Physical interaction between proliferating cell nuclear antigen and replication factor C from Pyrococcus furiosus, Genes Cells, 7, 911, 10.1046/j.1365-2443.2002.00572.x
Mayanagi, 2009, Mechanism of replication machinery assembly as revealed by the DNA ligase-PCNA-DNA complex architecture, Proc. Natl. Acad. Sci. USA, 106, 4647, 10.1073/pnas.0811196106
Mayanagi, 2011, Architecture of the DNA polymerase B-proliferating cell nuclear antigen (PCNA)-DNA ternary complex, Proc. Natl. Acad. Sci. USA, 108, 1845, 10.1073/pnas.1010933108
Meslet-Cladiere, 2007, A novel proteomic approach identifies new interaction partners for proliferating cell nuclear antigen, J. Mol. Biol., 372, 1137, 10.1016/j.jmb.2007.06.056
Mol, 2002, Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases, J. Mol. Biol., 315, 373, 10.1006/jmbi.2001.5264
Moldovan, 2007, PCNA, the maestro of the replication fork, Cell, 129, 665, 10.1016/j.cell.2007.05.003
Morera, 2012, Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA, Nucleic Acids Res., 40, 9917, 10.1093/nar/gks714
Natrajan, 2003, Structures of Escherichia coli DNA mismatch repair enzyme MutS in complex with different mismatches: a common recognition mode for diverse substrates, Nucleic Acids Res., 31, 4814, 10.1093/nar/gkg677
Nichols, 1999, Structure and function of an archaeal topoisomerase VI subunit with homology to the meiotic recombination factor Spo11, EMBO J., 18, 6177, 10.1093/emboj/18.21.6177
Nishino, 2002, Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors, Oncogene, 21, 9022, 10.1038/sj.onc.1206135
Obmolova, 2000, Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA, Nature, 407, 703, 10.1038/35037509
Orchard, 2013, The MIntAct project–IntAct as a common curation platform for 11 molecular interaction databases, Nucleic Acids Res., 42, D358, 10.1093/nar/gkt1115
Orlowski, 2008, Structural and evolutionary classification of type II restriction enzymes based on theoretical and experimental analyses, Nucleic Acids Res., 36, 3552, 10.1093/nar/gkn175
Otwinowski, 1997, Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol., 276, 307, 10.1016/S0076-6879(97)76066-X
Parkinson, 1997, The junction-resolving enzyme T7 endonuclease I: quaternary structure and interaction with DNA, J. Mol. Biol., 270, 169, 10.1006/jmbi.1997.1128
Pettersen, 2004, UCSF Chimera – a visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605, 10.1002/jcc.20084
Pingoud, 2014, Type II restriction endonucleases – a historical perspective and more, Nucleic Acids Res., 42, 7489, 10.1093/nar/gku447
Qiu, 2004, Mutation detection using Surveyor nuclease, Biotechniques, 36, 702, 10.2144/04364PF01
Ren, 2009, Structure and function of a novel endonuclease acting on branched DNA substrates, EMBO J., 28, 2479, 10.1038/emboj.2009.192
Seitz, 1998, RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange, Genes Dev., 12, 1248, 10.1101/gad.12.9.1248
Sohail, 1990, A gene required for very short patch repair in Escherichia coli is adjacent to the DNA cytosine methylase gene, J. Bacteriol., 172, 4214, 10.1128/jb.172.8.4214-4221.1990
Spaans, 2015, The chromosome copy number of the hyperthermophilic archaeon Thermococcus kodakarensis KOD1, Extremophiles, 19, 741, 10.1007/s00792-015-0750-5
Tang, 2007, EMAN2: an extensible image processing suite for electron microscopy, J. Struct. Biol., 157, 38, 10.1016/j.jsb.2006.05.009
Tsutakawa, 1999, Recognition of a TG mismatch: the crystal structure of very short patch repair endonuclease in complex with a DNA duplex, Cell, 99, 615, 10.1016/S0092-8674(00)81550-0
Tsutakawa, 1999, Crystallographic and functional studies of very short patch repair endonuclease, Mol. Cell, 3, 621, 10.1016/S1097-2765(00)80355-X
Tsutakawa, 2014, The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once, DNA Repair (Amst.), 19, 95, 10.1016/j.dnarep.2014.03.022
UniProt Consortium, 2013, Activities at the universal protein resource (UniProt), Nucleic Acids Res., 42, D191
Vijayvargia, 2002, MutS2 family protein from Pyrococcus furiosus, Curr. Microbiol., 44, 224, 10.1007/s00284-001-0025-5
White, 2011, Homologous recombination in the archaea: the means justify the ends, Biochem. Soc. Trans., 39, 15, 10.1042/BST0390015
Yin, 2014, Dynamics of spontaneous flipping of a mismatched base in DNA duplex, Proc. Natl. Acad. Sci. USA, 111, 8043, 10.1073/pnas.1400667111