Structure of silver clusters with magic numbers of atoms by data of molecular dynamics

Colloid Journal - Tập 70 - Trang 284-296 - 2008
V. I. Kuzmin1, D. L. Tytik2, D. K. Belashchenko3, A. N. Sirenko3
1Moscow State Institute of Radio Engineering, Electronics, and Automation, Moscow, Russia
2Frumkin Institute of Physical Chemistry and Electrochemistry, Moscow, Russia
3Moscow State Institute of Steel and Alloys, Moscow, Russia

Tóm tắt

The behavior of silver clusters (cubic octahedron habit) with magic numbers of atoms N = 13, 55, 146, 309, 561, 923, 1415, and 2057 in the 0–1300 K temperature range is studied for the embeded atom model by the molecular dynamics method. The structural method for the analysis of the dynamics of local configurations of atoms based on the construction of angular characteristics of simplexes of the Delone partition of a cluster is proposed. Structural transitions of clusters with a cubic octahedron habit to the stable clusters with an icosahedron habit are revealed. Motions of atoms in clusters with an icosahedron habit are transformed into the stationary vibration mode. Middle positions of atoms in clusters tend to form shells with a regular structure. At N = 561, there are 15 such shells. The cluster with N = 561 at 650 K is characterized by a reduced density close to that of silver melt.

Tài liệu tham khảo

Rehbinder, P.A., Izbrannye trudy. Poverkhnostnye yavleniya v dispersnykh sistemakh. Kolloidnaya khimiya (Selected Works. Surface Phenomena in Disperse Systems. Colloid Chemistry), Moscow: Nauka, 1978. Derjaguin, B.V., Churaev, N.V., and Muller, V.M., Surface Forces, New York: Consultants Bureau, 1987. Makkei, A., Kristallografiya, 2001, vol. 46, p. 587. Sadovsky, M.A., Izbrannye trudy. Geofizika i fizika vzryva (Selected Works. Geophysics and Explosion Physics), Moscow: Nauka, 1999. Kuzmin, V.I. and Galusha, N.A., in Sistemnye issledovaniya. Metodologicheskie problemy. Ezhegodnik 2000 (System Researches. Methodology Problems. Yearbook 2000), Moscow: URSS, 2002. Gusev, A.I., Nanomaterialy, nanostruktury, nanotekhnologii (Nanomaterials, Nanostructures, Nanotechnologies), Moscow: Fizmatlit, 2005. Suzdalev, I.P., Nanotekhnologiya. Fizikokhimiya nanoklasterov, nanostruktur i nanomaterialov (Nanotechnology. Physical Chemistry of Nanoclusters, Nanostructures and Nanomaterials), Moscow: URSS, 2006. Chini, P., Gazz. Chim. Ital., 1979, vol. 109, p. 225. Rosch, N. and Pacchioni, G., in Clusters and Colloids. From Theory to Applications, Schmid, G., Ed., Weinheim: VCH, 1994, p. 5. Martin, T.P., Phys. Rep., 1996, vol. 273, p. 199. De Heer, W.A., Rev. Mod. Phys., 1993, vol. 65, p. 611. Sergeev, G.B., Nanokhimiya (Nanochemistry), Moscow: Mosk. Gos. Univ., 2003. Ershov, B.G., Usp. Khim., 1997, vol. 66, p. 93. Ershov, B.G., Izv. Akad. Nauk, Ser. Khim., 1999, vol. 48, no. 1, p. 1. Plaksin, O.A., Amekura, H., and Kishimoto, N., J. Appl. Phys., 2006, vol. 99, p. 044307–10. Plaksin, O.A., Takeda, Y., Amekura, H., and Kishimoto, N., Appl. Phys. Lett., 2006, vol. 88, p. 201915-1–3. Bulienkov, N.A., Vestn. Nizhegorod. Univ., Ser. Fiz. Tverd. Tela, 1998, no. 1, p. 19. Bulienkov, N.A, in Quasicrystals and Discrete Geometry. The Fields Institute Monographs, Patera, J., Ed., Providence: American Mathematical Society, 1998, vol. 10, p. 67. Bulienkov, N.A. and Tytik, D.L., Izv. Akad. Nauk, Ser. Khim., 2001, vol. 50, no. 1, p. 1. Brack, M., Rev. Mod. Phys., 1993, vol. 65, p. 677. Brechignac, C, in Clusters of Atoms and Molecules, Haberland, H., Ed., Berlin: Springer, 1994, p. 255. Teo, B.K. and Sloane, N.J.A., Inorg.Chem., 1985, vol. 24, p. 4545. Schommers, W., Phys. Lett. A, 1973, vol. 43, p. 157. Schommers, W., Phys. Rev. A: Gen. Phys., 1983, vol. 28, p. 3599. Belashchenko, D.K., Komp’yuternoe modelirovanie zhidkikh i amorfnykh veshchestv (Computer Simulation of Liquid and Amorphous Substances), Moscow: MISiS, 2005. Doyama, M. and Kogure, Y., Comput. Mater. Sci., 1999, vol. 14, p. 80. Tytik, D.L., Belashchenko, D.K., and Sirenko, A.N., Abstracts of Papers, IX Mezhdunar. seminar “Strukturnye osnovy modifikatsii materialov metodami netraditsionnykh tekhnologii” (IX Int. Workshop “Structural Fundamentals of Material Modification Using Nontraditional Technologies”), Obninsk, 2007, p. 57. Tytik, D.L., Belashchenko, D.K., and Sirenko, A.N., Zh. Strukt. Khim., 2008, vol. 49, no. 1, p. 130. Konovalov, O.V., Crystallographically Proper Partitions of Euclidean Space into Semiproper Isogonals, Preprint of Inst. of Crystallography, USSR Acad. Sci., Moscow, 1988, no. 7. Medvedev, N.N. and Naberukhin, Yu.I., J. Non-Cryst. Solids, 1987, vol. 94, p. 402. Medvedev, N.N., Metod Voronogo-Delone v issledovanii struktury nekristallicheskikh sistem (The Voronoi-Delone Method in Studying Structure of Noncrystalline Systems), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2000. Nieto, M., The Titius-Bode Law of Planetary Distances: Its History and Theory, Oxford: Pergamon, 1972. Wenninger, M., Polyhedron Models, Cambridge: Cambridge Univ. Press, 1971. Spreadborough, J. and Christian, J.W., J. Sci. Instrum., 1959, vol. 36, p. 116. Bleecker, D.D., J. Diffus. Geom., 1996, vol. 43, p. 505. Pak, I., Inflating Polyhedral Surfaces, Preprint of Department of Mathematics, Massachusetts Inst. of Technology, Cambridge, 2006, http://www-math.mit.edu/:_pak/research.html#gc. Mendeleev, D.I., Rastvory (Solutions), Leningrad: Akad. Nauk SSSR, 1959. Zhirmunsky, A.V. and Kuzmin, V.I., Critical Levels in the Development of Natural Systems, Berlin: Springer, 1988. Zhirmunskii, A.V. and Kuzmin, V.I., Kriticheskie urovni v razvitii prirodnykh sistem (The Critical Levels in Evolution of Nature Systems), Leningrad: Nauka, 1990. Bethe, H., Lektsii po teorii yadra (Lectures on the Nuclear Theory), Moscow: Inostrannaya Literatura, 1949. Schmidt-Nielsen, K., Scaling: Why is Animal Size So Important, Cambridge: Cambridge Univ. Press, 1984.