Structure-mechanical function relations at nano-scale in heat-affected human dental tissue

Tan Sui1, Michael A. Sandholzer2, Eric Le Bourhis3, Nikolaos Baimpas1, Gabriel Landini2, Alexander M. Korsunsky1
1Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom
2School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, St Chad’s Queensway, Birmingham B4 6NN, United Kingdom
3Institut P’,CNRS UPR 3346, University of Poitiers, SP2MI, BP 30179, F86962 Futuroscope Chasseneuil Cedex, France

Tài liệu tham khảo

Al-Jawad, 2007, 2D mapping of texture and lattice parameters of dental enamel, Biomaterials, 28, 2908, 10.1016/j.biomaterials.2007.02.019 Angker, 2005, Characterising the micro-mechanical behaviour of the carious dentine of primary teeth using nano-indentation, J. Biomech., 38, 1535, 10.1016/j.jbiomech.2004.07.012 Bao, 2004, Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements, Acta Mater., 52, 5397, 10.1016/j.actamat.2004.08.002 Beckett, 2011, Inter-species variation in bone Mineral behavior upon heating, J. Forensic Sci., 56, 571, 10.1111/j.1556-4029.2010.01690.x Bozec, 2005, Atomic force microscopy of collagen structure in bone and dentine revealed by osteoclastic resorption, Ultramicroscopy, 105, 79, 10.1016/j.ultramic.2005.06.021 Bragg, 1933, Vol. 1 Daniels, 2010, Simultaneous small- and wide-angle scattering at high X-ray energies, J. Synchrotron Radiat., 17, 473, 10.1107/S0909049510016456 Deymier-Black, 2010, Synchrotron X-ray diffraction study of load partitioning during elastic deformation of bovine dentin, Acta Biomater., 6, 2172, 10.1016/j.actbio.2009.11.017 Ebenstein, 2006, Nanoindentation of biological materials, Nano Today, 1, 26, 10.1016/S1748-0132(06)70077-9 Eliceiri, 2012, Biological imaging software tools, Nat. Methods, 9, 697, 10.1038/nmeth.2084 Enzo, 2007, A study by thermal treatment and X-ray powder diffraction on burnt fragmented bones from tombs II, IV and IX belonging to the hypogeic necropolis of “Sa Figu” near Ittiri, Sassari (Sardinia, Italy), J. Archaeol. Sci., 34, 1731, 10.1016/j.jas.2006.12.011 Fong, 2000, Nano-mechanical properties profiles across dentin-enamel junction of human incisor teeth, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 7, 119, 10.1016/S0928-4931(99)00133-2 Fratzl, 1996, Characterization of bone Miner. crystals in horse radius by small-angle X-ray scattering, Calcif. Tissue Int., 58, 341, 10.1007/BF02509383 Fried, 2002, Thermal and chemical modification of dentin by 9–11-mu m CO2 laser pulses of 5–100-mu s duration, Lasers Surg. Med., 31, 275, 10.1002/lsm.10100 Hammersley, A.P. 1997. “FIT2D: An Introduction and Overview” ESRF Internal Report. Haque, 2003, Application of nanoindentation to development of biomedical materials, Surf. Eng., 19, 255, 10.1179/026708403322499173 He, 2009, Enamel—A functionally graded natural coating, J. Dentistry, 37, 596, 10.1016/j.jdent.2009.03.019 Hiller, 2003, Bone Mineral change during experimental heating: an X-ray scattering investigation, Biomaterials, 24, 5091, 10.1016/S0142-9612(03)00427-7 Hsu, C.M., Lin, A.D., Chien, H.L., Hung, T.P., Kuang, J.H., Using nanoindentation techniques to investigate the Young's moduli for human teeth of different ages. Jacobs, 1973, Heat-transfer in teeth, J. Dent. Res., 52, 248, 10.1177/00220345730520021101 Jiang, 2005, Ordering of self-assembled nanobiominerals in correlation to mechanical properties of hard tissues, Appl. Phys. Lett., 86 Kinney, 2003, The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature, Crit. Rev. Oral Biol. Med., 14, 13, 10.1177/154411130301400103 Krishna, 2013, On the prediction of strength from hardness for copper alloys, J. Mater., 2013, 1, 10.1155/2013/352578 Kugler, 2003, X-ray diffraction analysis in forensic science: the last resort in many criminal cases, Adv. X-ray Anal., 46 Le Bourhis, 2007, TEM-nanoindentation studies of semiconducting structures, Micron, 38, 377, 10.1016/j.micron.2006.06.007 Le Bourhis, 2004, Polarity-induced changes in the nanoindentation response of GaAs, J. Mater. Res., 19, 131, 10.1557/jmr.2004.19.1.131 Lim, C.T., Hairul Nizam, B.R., Omar, B.H.B., Chng, H.K., Yap, A.U.J., 2005. Probing the nanomechanical properties of teeth. ICF11 proceeding. Macho, 2003, Enamel microstructure–a truly three-dimensional structure, J. Human Evol., 45, 81, 10.1016/S0047-2484(03)00083-6 Marshall, 2001, Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture, J. Biomed. Mater. Res., 54, 87, 10.1002/1097-4636(200101)54:1<87::AID-JBM10>3.0.CO;2-Z Marshall, 1998, Human dentin and the dentin–resin adhesive interface, Acta Mater., 46, 2529, 10.1016/S1359-6454(98)80037-2 Marten, 2010, On the Miner. in collagen of human crown dentine, Biomaterials, 31, 5479, 10.1016/j.biomaterials.2010.03.030 Oliver, 1992, An Improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7, 1564, 10.1557/JMR.1992.1564 Patriarche, 2004, Indentation-induced crystallization and phase transformation of amorphous germanium, J. Appl. Phys., 96, 1464, 10.1063/1.1766414 Piga, 2008, A new calibration of the XRD technique for the study of Archaeological burned human remains, J. Archaeol. Sci., 35, 2171, 10.1016/j.jas.2008.02.003 Piga, 2009, The potential of X-Ray diffraction in the analysis of burned remains from forensic contexts, J. Forensic Sci., 54, 534, 10.1111/j.1556-4029.2009.01037.x Piga, 2013, Is X-ray diffraction able to distinguish between animal and human bones?, J. Archaeol. Sci., 40, 778, 10.1016/j.jas.2012.07.004 Pramanik, 2013, Morphological change of heat treated bovine bone: a comparative study, Materials, 6, 65, 10.3390/ma6010065 Reiche, 2002, The crystallinity of ancient bone and dentine: new insights by transmission electron microscopy, Archaeometry, 44, 447, 10.1111/1475-4754.00077 Rinnerthaler, 1999, Scanning small angle X-ray scattering analysis of human bone sections, Calcif. Tissue Int., 64, 422, 10.1007/PL00005824 Rogers, 2010, Contrasting the crystallinity indicators of heated and diagenetically altered bone Mineral, Palaeogeogr. Palaeoclimatol. Palaeoecol., 296, 125, 10.1016/j.palaeo.2010.06.021 Rogers, 2002, An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure, Biomaterials, 23, 2577, 10.1016/S0142-9612(01)00395-7 Roy, 2008, Mechanical and tribological characterization of human tooth, Mater. Charact., 59, 747, 10.1016/j.matchar.2007.06.008 Shipman, 1984, Burnt bones and teeth—an experimental-study of color, morphology, crystal-structure and shrinkage, J. Archaeol. Sci., 11, 307, 10.1016/0305-4403(84)90013-X Sui, 2013, Multi-scale modelling and diffraction-based characterization of elastic behaviour of human dentine, Acta Biomater., 9, 7937, 10.1016/j.actbio.2013.04.020 Sui, 2014, Hierarchical modelling of in situ elastic deformation of human enamel based on photoelastic and diffraction analysis of stresses and strains, Acta Biomater., 10, 343, 10.1016/j.actbio.2013.09.043 Ten Cate, 1998 Tesch, 2001, Graded microstructure and mechanical properties of human crown dentin, Calcif. Tissue Int., 69, 147, 10.1007/s00223-001-2012-z Tesch, 2003, Orientation of mineral crystallites and mineral density during skeletal development in mice deficient in tissue nonspecific alkaline phosphatase, J. Bone Miner. Res., 18, 117, 10.1359/jbmr.2003.18.1.117 Thompson, 2005, Heat-induced dimensional changes in bone and their consequences for forensic anthropology, J. Forensic Sci., 50, 1008, 10.1520/JFS2004297 Thompson, 2013, A new statistical approach for determining the crystallinity of heat-altered bone Miner. from FTIR spectra, J. Archaeol. Sci., 40, 416, 10.1016/j.jas.2012.07.008 Thompson, 2011, An investigation into the internal and external variables acting on crystallinity index using Fourier Transform Infrared Spectroscopy on unaltered and burned bone, Palaeogeogr. Palaeoclimatol. Palaeoecol., 299, 168, 10.1016/j.palaeo.2010.10.044 Zuerlein, 1999, Modeling the modification depth of carbon dioxide laser-treated dental enamel, Lasers in Surg. Med., 25, 335, 10.1002/(SICI)1096-9101(1999)25:4<335::AID-LSM8>3.0.CO;2-F