Structure-mechanical function relations at nano-scale in heat-affected human dental tissue
Tài liệu tham khảo
Al-Jawad, 2007, 2D mapping of texture and lattice parameters of dental enamel, Biomaterials, 28, 2908, 10.1016/j.biomaterials.2007.02.019
Angker, 2005, Characterising the micro-mechanical behaviour of the carious dentine of primary teeth using nano-indentation, J. Biomech., 38, 1535, 10.1016/j.jbiomech.2004.07.012
Bao, 2004, Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements, Acta Mater., 52, 5397, 10.1016/j.actamat.2004.08.002
Beckett, 2011, Inter-species variation in bone Mineral behavior upon heating, J. Forensic Sci., 56, 571, 10.1111/j.1556-4029.2010.01690.x
Bozec, 2005, Atomic force microscopy of collagen structure in bone and dentine revealed by osteoclastic resorption, Ultramicroscopy, 105, 79, 10.1016/j.ultramic.2005.06.021
Bragg, 1933, Vol. 1
Daniels, 2010, Simultaneous small- and wide-angle scattering at high X-ray energies, J. Synchrotron Radiat., 17, 473, 10.1107/S0909049510016456
Deymier-Black, 2010, Synchrotron X-ray diffraction study of load partitioning during elastic deformation of bovine dentin, Acta Biomater., 6, 2172, 10.1016/j.actbio.2009.11.017
Ebenstein, 2006, Nanoindentation of biological materials, Nano Today, 1, 26, 10.1016/S1748-0132(06)70077-9
Eliceiri, 2012, Biological imaging software tools, Nat. Methods, 9, 697, 10.1038/nmeth.2084
Enzo, 2007, A study by thermal treatment and X-ray powder diffraction on burnt fragmented bones from tombs II, IV and IX belonging to the hypogeic necropolis of “Sa Figu” near Ittiri, Sassari (Sardinia, Italy), J. Archaeol. Sci., 34, 1731, 10.1016/j.jas.2006.12.011
Fong, 2000, Nano-mechanical properties profiles across dentin-enamel junction of human incisor teeth, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 7, 119, 10.1016/S0928-4931(99)00133-2
Fratzl, 1996, Characterization of bone Miner. crystals in horse radius by small-angle X-ray scattering, Calcif. Tissue Int., 58, 341, 10.1007/BF02509383
Fried, 2002, Thermal and chemical modification of dentin by 9–11-mu m CO2 laser pulses of 5–100-mu s duration, Lasers Surg. Med., 31, 275, 10.1002/lsm.10100
Hammersley, A.P. 1997. “FIT2D: An Introduction and Overview” ESRF Internal Report.
Haque, 2003, Application of nanoindentation to development of biomedical materials, Surf. Eng., 19, 255, 10.1179/026708403322499173
He, 2009, Enamel—A functionally graded natural coating, J. Dentistry, 37, 596, 10.1016/j.jdent.2009.03.019
Hiller, 2003, Bone Mineral change during experimental heating: an X-ray scattering investigation, Biomaterials, 24, 5091, 10.1016/S0142-9612(03)00427-7
Hsu, C.M., Lin, A.D., Chien, H.L., Hung, T.P., Kuang, J.H., Using nanoindentation techniques to investigate the Young's moduli for human teeth of different ages.
Jacobs, 1973, Heat-transfer in teeth, J. Dent. Res., 52, 248, 10.1177/00220345730520021101
Jiang, 2005, Ordering of self-assembled nanobiominerals in correlation to mechanical properties of hard tissues, Appl. Phys. Lett., 86
Kinney, 2003, The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature, Crit. Rev. Oral Biol. Med., 14, 13, 10.1177/154411130301400103
Krishna, 2013, On the prediction of strength from hardness for copper alloys, J. Mater., 2013, 1, 10.1155/2013/352578
Kugler, 2003, X-ray diffraction analysis in forensic science: the last resort in many criminal cases, Adv. X-ray Anal., 46
Le Bourhis, 2007, TEM-nanoindentation studies of semiconducting structures, Micron, 38, 377, 10.1016/j.micron.2006.06.007
Le Bourhis, 2004, Polarity-induced changes in the nanoindentation response of GaAs, J. Mater. Res., 19, 131, 10.1557/jmr.2004.19.1.131
Lim, C.T., Hairul Nizam, B.R., Omar, B.H.B., Chng, H.K., Yap, A.U.J., 2005. Probing the nanomechanical properties of teeth. ICF11 proceeding.
Macho, 2003, Enamel microstructure–a truly three-dimensional structure, J. Human Evol., 45, 81, 10.1016/S0047-2484(03)00083-6
Marshall, 2001, Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture, J. Biomed. Mater. Res., 54, 87, 10.1002/1097-4636(200101)54:1<87::AID-JBM10>3.0.CO;2-Z
Marshall, 1998, Human dentin and the dentin–resin adhesive interface, Acta Mater., 46, 2529, 10.1016/S1359-6454(98)80037-2
Marten, 2010, On the Miner. in collagen of human crown dentine, Biomaterials, 31, 5479, 10.1016/j.biomaterials.2010.03.030
Oliver, 1992, An Improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7, 1564, 10.1557/JMR.1992.1564
Patriarche, 2004, Indentation-induced crystallization and phase transformation of amorphous germanium, J. Appl. Phys., 96, 1464, 10.1063/1.1766414
Piga, 2008, A new calibration of the XRD technique for the study of Archaeological burned human remains, J. Archaeol. Sci., 35, 2171, 10.1016/j.jas.2008.02.003
Piga, 2009, The potential of X-Ray diffraction in the analysis of burned remains from forensic contexts, J. Forensic Sci., 54, 534, 10.1111/j.1556-4029.2009.01037.x
Piga, 2013, Is X-ray diffraction able to distinguish between animal and human bones?, J. Archaeol. Sci., 40, 778, 10.1016/j.jas.2012.07.004
Pramanik, 2013, Morphological change of heat treated bovine bone: a comparative study, Materials, 6, 65, 10.3390/ma6010065
Reiche, 2002, The crystallinity of ancient bone and dentine: new insights by transmission electron microscopy, Archaeometry, 44, 447, 10.1111/1475-4754.00077
Rinnerthaler, 1999, Scanning small angle X-ray scattering analysis of human bone sections, Calcif. Tissue Int., 64, 422, 10.1007/PL00005824
Rogers, 2010, Contrasting the crystallinity indicators of heated and diagenetically altered bone Mineral, Palaeogeogr. Palaeoclimatol. Palaeoecol., 296, 125, 10.1016/j.palaeo.2010.06.021
Rogers, 2002, An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure, Biomaterials, 23, 2577, 10.1016/S0142-9612(01)00395-7
Roy, 2008, Mechanical and tribological characterization of human tooth, Mater. Charact., 59, 747, 10.1016/j.matchar.2007.06.008
Shipman, 1984, Burnt bones and teeth—an experimental-study of color, morphology, crystal-structure and shrinkage, J. Archaeol. Sci., 11, 307, 10.1016/0305-4403(84)90013-X
Sui, 2013, Multi-scale modelling and diffraction-based characterization of elastic behaviour of human dentine, Acta Biomater., 9, 7937, 10.1016/j.actbio.2013.04.020
Sui, 2014, Hierarchical modelling of in situ elastic deformation of human enamel based on photoelastic and diffraction analysis of stresses and strains, Acta Biomater., 10, 343, 10.1016/j.actbio.2013.09.043
Ten Cate, 1998
Tesch, 2001, Graded microstructure and mechanical properties of human crown dentin, Calcif. Tissue Int., 69, 147, 10.1007/s00223-001-2012-z
Tesch, 2003, Orientation of mineral crystallites and mineral density during skeletal development in mice deficient in tissue nonspecific alkaline phosphatase, J. Bone Miner. Res., 18, 117, 10.1359/jbmr.2003.18.1.117
Thompson, 2005, Heat-induced dimensional changes in bone and their consequences for forensic anthropology, J. Forensic Sci., 50, 1008, 10.1520/JFS2004297
Thompson, 2013, A new statistical approach for determining the crystallinity of heat-altered bone Miner. from FTIR spectra, J. Archaeol. Sci., 40, 416, 10.1016/j.jas.2012.07.008
Thompson, 2011, An investigation into the internal and external variables acting on crystallinity index using Fourier Transform Infrared Spectroscopy on unaltered and burned bone, Palaeogeogr. Palaeoclimatol. Palaeoecol., 299, 168, 10.1016/j.palaeo.2010.10.044
Zuerlein, 1999, Modeling the modification depth of carbon dioxide laser-treated dental enamel, Lasers in Surg. Med., 25, 335, 10.1002/(SICI)1096-9101(1999)25:4<335::AID-LSM8>3.0.CO;2-F