Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Chiết xuất cấu trúc của hình ảnh sử dụng khuếch tán không đồng nhất với toán tử đạo hàm hàng xóm thứ hai theo hướng
Tóm tắt
Mục đích của việc chiết xuất cấu trúc là phân tích một hình ảnh thành các cấu trúc và kết cấu nổi bật. Trong bài báo này, chúng tôi trình bày một phương pháp chiết xuất cấu trúc mới có hai bước chính. Đầu tiên, các thành phần tần số cao do thông tin kết cấu trong hình ảnh gốc được giảm thiểu bởi bộ lọc làm mịn trước. Kết quả sau đó được xử lý bằng một thuật toán khuếch tán không đồng nhất mới, sử dụng toán tử đạo hàm hàng xóm thứ hai (SND) thay vì toán tử đạo hàm hàng xóm đầu tiên. Chúng tôi đã chứng minh rằng toán tử SND phù hợp hơn cho các ứng dụng như làm mịn kết cấu. Chúng tôi cũng đã trình bày một nghiên cứu chi tiết về phương pháp được đề xuất bao gồm việc lựa chọn bộ lọc làm mịn trước, số lượng vòng lặp, và tham số tỷ lệ trong thuật toán khuếch tán không đồng nhất. Chúng tôi đã thực hiện các thí nghiệm để so sánh hiệu suất của phương pháp được đề xuất với các thuật toán chiết xuất cấu trúc tiên tiến khác trong một loạt các ứng dụng chỉnh sửa hình ảnh như: phân đoạn siêu pixel, chuyển giao kết cấu, tăng cường độ tương phản, và vẽ bút chì. Chúng tôi cho thấy rằng trong khi tốc độ chạy của phương pháp được đề xuất là nhanh nhất, hiệu suất của nó cạnh tranh với các phương pháp khác.
Từ khóa
#chiết xuất cấu trúc #khuếch tán không đồng nhất #đạo hàm hàng xóm thứ hai #làm mịn kết cấu #ứng dụng chỉnh sửa hình ảnhTài liệu tham khảo
Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S (2012) Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282
Al-nasrawi M, Deng G, Thai B (2018) Edge-aware smoothing through adaptive interpolation. SIViP 12(2):347–354
Arnheim R (1956) Art and visual perception: a psychology of the creative eye. University of California Press, Berkeley & Los Angeles
Aujol JF, Gilboa G, Chan T, Osher S (2006) Structure-texture image decomposition—modeling, algorithms, and parameter selection. Int J Comput Vis 67 (1):111–136
Bao L, Song Y, Yang Q, Yuan H, Wang G (2014) Tree filtering: efficient structure-preserving smoothing with a minimum spanning tree. IEEE Trans Image Process 23(2):555–569
Buades A, Le TM, Morel JM, Vese LA (2010) Fast cartoon + texture image filters. IEEE Trans Image Process 19(8):1978–1986
Cho H, Lee H, Kang H, Lee S (2014) Bilateral texture filtering. ACM Trans Graph 33(4):128:1–128:8
Deng G (2016) Edge-aware bma filters. IEEE Trans Image Process 25(1):439–454
Du H, Jin X, Willis PJ (2016) Two-level joint local Laplacian texture filtering. Vis Comput 32(12):1537–1548
Farbman Z, Fattal R, Lischinski D, Szeliski R (2008) Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans Graph 27 (3):67:1–10
Gastal ESL, Oliveira MM (2011) Domain transform for edge-aware image and video processing. ACM Trans Graph 30(4):69:1–69:12
Ham B, Cho M, Ponce J (2015) Robust image filtering using joint static and dynamic guidance. In: Proc IEEE conference on computer vision and pattern recognition, pp 4823–4831
He K, Sun J, Tang X (2013) Guided image filtering. IEEE Trans Pattern Anal Mach Intell 35(6):1397–1409
Jeon J, Lee H, Kang H, Lee S (2016) Scale-aware structure-preserving texture filtering. In: Computer graphics forum, vol 35, pp 77–86
Jiang X, Yao H, Liu S (2017) How many zero crossings? a method for structure-texture image decomposition. Comput Graph 68:129–141
Karacan L, Erdem E, Erdem A (2013) Structure-preserving image smoothing via region covariances. ACM Trans Graph 32(6):176:1–176:11
Kopf J, Cohen MF, Lischinski D, Uyttendaele M (2007) Joint bilateral upsampling. ACM Trans Graph 26(3):96–99
Lan X, Ma AJ, Yuen PC (2014) Multi-cue visual tracking using robust feature-level fusion based on joint sparse representation. In: Proc IEEE conference on computer vision and pattern recognition, pp 1194–1201
Lan X, Ma AJ, Yuen PC, Chellappa R (2015) Joint sparse representation and robust feature-level fusion for multi-cue visual tracking. IEEE Trans Image Process 24(12):5826–5841
Lan X, Yuen PC, Chellappa R (2017) Robust mil-based feature template learning for object tracking. In: Proc conference on artificial intelligence (AAAI), pp 4118–4125
Lan X, Zhang S, Yuen PC (2016) Robust joint discriminative feature learning for visual tracking. In: Proc international joint conference on artificial intelligence, pp 3403–3410
Lan X, Zhang S, Yuen PC, Chellappa R (2018) Learning common and feature-specific patterns: a novel multiple-sparse-representation-based tracker. IEEE Trans Image Process 27(4):2022–2037
Lee H, Jeon J, Kim J, Lee S (2017) Structure-texture decomposition of images with interval gradient. In: Computer graphics forum, vol 36, pp 262–274
Li Y, Guo F, Tan RT, Brown MS (2014) A contrast enhancement framework with jpeg artifacts suppression. In: European conference on computer vision, Springer, pp 174–188
Lindeberg T (1994) Scale-space theory: a basic tool for analyzing structures at different scales. J Appl Stat 21(1-2):225–270
Lu C, Xu L, Jia J (2012) Combining sketch and tone for pencil drawing production. In: Proc symposium on non-photorealistic animation and rendering, pp 65–73
Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639
Petschnigg G, Szeliski R, Agrawala M, Cohen M, Hoppe H, Toyama K (2004) Digital photography with flash and no-flash image pairs. ACM Trans Graph 23(3):664–672
Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D, Nonlinear Phenomena 60(1-4):259–268
Su Z, Luo X, Deng Z, Liang Y, Ji Z (2013) Edge-preserving texture suppression filter based on joint filtering schemes. IEEE Trans Multimedia 15(3):535–548
Su Z, Zeng B, Miao J, Luo X, Yin B, Chen Q (2017) Relative reductive structure-aware regression filter. J Comput Appl Math 329:244–255
Subr K, Soler C, Durand F (2009) Edge-preserving multiscale image decomposition based on local extrema. ACM Trans Graph 28(5):147:1–147:9
Thai B, Al-nasrawi M, Deng G, Su Z (2017) Semi-guided bilateral filter. IET Image Process 11(7):512–521
Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: 6Th international conference on computer vision, pp 839–846
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13 (4):600–612
Wu H, Xu D, Yuan G (2017) Region covariance based total variation optimization for structure-texture decomposition. Multimedia Tools and Applications
Xu L, Lu C, Xu Y, Jia J (2011) Image smoothing via L 0, gradient minimization. ACM Trans Graph 30(6):174:1–174:12
Xu L, Yan Q, Xia Y, Jia J (2012) Structure extraction from texture via relative total variation. ACM Trans Graph 31(6):139
Yin W, Goldfarb D, Osher S (2005) Image cartoon-texture decomposition and feature selection using the total variation regularized l1 functional. In: Variational, geometric, and level set methods in computer vision, Springer, pp 73–84
Zhang Q, Shen X, Xu L, Jia J (2014) Rolling guidance filter. In: European conference on computer vision, Springer, pp 815–830
Zhou Z, Wang B, Ma J (2018) Scale-aware edge-preserving image filtering via iterative global optimization. IEEE Trans Multimedia 20(6):1392–1405
