Structure evolution of aluminosilicate sol and its structure-directing effect on the synthesis of NaY zeolite

Journal of Applied Crystallography - Tập 50 Số 1 - Trang 231-239 - 2017
Xiao‐Meng Zhao1, Rugeng Liu1, Heng Zhang1, Yunshan Shang1, Yu Song1, Chao Liu1, Tao Wang1, Yanjun Gong1, Zhihong Li2
1State Key Laboratory of Heavy Oil Processing, The Key Laboratory of Catalysis of CNPC, China University of Petroleum–Beijing, Beijing, People's Republic of China
2Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, People’s Republic of China

Tóm tắt

Understanding the growth behaviour of an aluminosilicate sol during ageing is necessary for the design of the sol and the synthesis of NaY zeolite. Herein, aluminosilicate sols with three different SiO2/Al2O3 ratios were prepared and aged for varying times at 293 K. The sol was then introduced as a structure-directing agent in the feedstock gel to generate NaY zeolite. The structure evolution of the sol species during the ageing process was studied by in situ small-angle X-ray scattering (SAXS) using synchrotron radiation. SAXS data, in combination with transmission electron microscopy images, Raman spectra and X-ray diffraction patterns, present a detailed description of the sol species, revealing an interplay between the fractal structure and reactivity to generate NaY zeolite. The SiO2/Al2O3 ratios in the sol play a critical role in the structure evolution of the aluminosilicate species during the ageing, particularly with respect to their size distributions and the fractal dimensions. The species with suitable size and compactness in the sol are found to be an active precursor for achieving a highly crystalline NaY zeolite. The sol with an SiO2/Al2O3 ratio of 20 possesses active species with a mass fractal dimension D m of 2.0–2.6 after ageing, which leads to the formation of a well crystallized NaY zeolite. However, the high-silica sol-25, with an SiO2/Al2O3 ratio of 25, and alumina rich sol-10, with a ratio of 10, experience growth at either slow or fast rates. In these cases the active species have smaller D m (1.1–1.9) or larger D m (2.6–2.8), respectively, displaying low/poor activity to generate NaY zeolite. The mechanisms regulating the growth behaviour of the sols during ageing are proposed.

Từ khóa


Tài liệu tham khảo

ASTM International (2013). ASTM D3906-03(2013). ASTM International, West Conshohocken, PA, USA.http://www.astm.org/cgi-bin/resolver.cgi?D3906-03(2013).

Beaucage, 2004, J. Appl. Cryst., 37, 523, 10.1107/S0021889804008969

Boukari, 1997, Chem. Mater., 9, 2376, 10.1021/cm9702878

Boukari, 1997, J. Colloid Interface Sci., 194, 311, 10.1006/jcis.1997.5112

Boukari, 2000, J. Colloid Interface Sci., 229, 129, 10.1006/jcis.2000.7007

Bressler, 2015, J. Appl. Cryst., 48, 962, 10.1107/S1600576715007347

Brinker, C. J. & Scherer, G. W. (1990). Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing. New York: Academic Press.

Cundy, 2003, Chem. Rev., 103, 663, 10.1021/cr020060i

Dumoulin, 2016, J. Appl. Cryst., 49, 366, 10.1107/S1600576716000297

Dutta, 1994, Zeolites, 14, 250, 10.1016/0144-2449(94)90092-2

Dutta, 1986, J. Phys. Chem., 90, 2331, 10.1021/j100402a017

Dutta, 1987, J. Phys. Chem., 91, 2332, 10.1021/j100293a025

Edler, 1999, J. Mater. Chem., 9, 2611, 10.1039/a904582a

Eilertsen, 2012, Chem. Mater., 24, 571, 10.1021/cm2032515

Fan, 2008, Chem. Eur. J., 14, 5125, 10.1002/chem.200800560

Fujii, 1996, Phys. Rev. B, 54, R8373, 10.1103/PhysRevB.54.R8373

Ginter, 1992, Zeolites, 12, 733, 10.1016/0144-2449(92)90125-9

Glatter, O. & Kratky, O. (1982). Small-Angle X-ray scattering. New York: Academic Press.

Gommes, 2004, J. Phys. Chem. B, 108, 8983, 10.1021/jp049568a

Hammersley, 2016, J. Appl. Cryst., 49, 646, 10.1107/S1600576716000455

Jellinek, 1946, Ind. Eng. Chem. Anal. Ed., 18, 172, 10.1021/i560151a005

Li, 2013, Chin. Phys. C, 37, 108002, 10.1088/1674-1137/37/10/108002

Li, 2001, J. Phys. D Appl. Phys., 34, 2085, 10.1088/0022-3727/34/14/301

Li, 2014, Instrum. Sci. Technol., 42, 128, 10.1080/10739149.2013.845845

McCormick, 1987, Zeolites, 7, 183, 10.1016/0144-2449(87)90048-0

Moor, 1997, Microporous Mater., 9, 117, 10.1016/S0927-6513(96)00102-2

Moor, 2000, J. Phys. Chem. B, 104, 7600, 10.1021/jp0006476

Nordström, 2013, J. Colloid Interface Sci., 397, 9, 10.1016/j.jcis.2013.01.048

Ogura, 2003, Chem. Mater., 15, 2661, 10.1021/cm0218209

Pauw, 2013, J. Appl. Cryst., 46, 365, 10.1107/S0021889813001295

Potton, 1988, J. Appl. Cryst., 21, 663, 10.1107/S0021889888004819

Roess, 1947, J. Appl. Phys., 18, 308, 10.1063/1.1697651

Roozeboom, 1983, Zeolites, 3, 321, 10.1016/0144-2449(83)90176-8

Sander, 1987, Sci. Am., 256, 94, 10.1038/scientificamerican0187-94

Schaefer, 1989, Science, 243, 1023, 10.1126/science.243.4894.1023

Schaefer, D. W. & Keefer, K. D. (1984). MRS Online Proceedings Library Archive, 32, 1-14.

Schaefer, 1986, Phys. Rev. Lett., 56, 2376, 10.1103/PhysRevLett.56.2199

Schmidt, 1991, J. Appl. Cryst., 24, 414, 10.1107/S0021889891003400

Schmidt, P. W. (1995). Modern Aspects of Small-Angle Scattering, edited by H. Brumberger, pp. 1-56. Dordrecht: Springer Netherlands.

Thangaraj, 1990, Zeolites, 10, 117, 10.1016/0144-2449(90)90029-Q

Tognonvi, 2010, J. Colloid Interface Sci., 352, 309, 10.1016/j.jcis.2010.09.018

Wei, 2016, Instrum. Sci. Technol., 44, 521, 10.1080/10739149.2016.1143838

Wei, 2017, Instrum. Sci. Technol., 45, 22, 10.1080/10739149.2016.1205084

Xu, 1981, Chem. J. Chin. U., 2, 520

Xu, 1982, Chem. J. Chin. U., 3, 287

Xu, 1982, Chem. J. Chin. U., 3, 437

Yao, 2016, Polym. Test., 53, 7, 10.1016/j.polymertesting.2016.05.007

Yi, 2015, Langmuir, 31, 8478, 10.1021/acs.langmuir.5b01637

Yue, 2012, Microporous Mesoporous Mater., 159, 50, 10.1016/j.micromeso.2012.04.027

Zhao, 2013, Microporous Mesoporous Mater., 167, 102, 10.1016/j.micromeso.2012.03.016