Structure evolution mechanism and physical modeling of Ni60Ti40 during dynamic recrystallization

Materials Characterization - Tập 190 - Trang 112028 - 2022
Ge Zhou1, Chuan Wang2, Jianlin Li1, Jinke Han1, Haoyu Zhang1, Siqian Zhang1, LiJia Chen1
1School of Materials Science and Engineering, Shenyang University of Technology, Liaoning 110870, China
2School of Light Industry, Liaoning University, 110036, China

Tài liệu tham khảo

Schetky, 2000, The industrial applications of shape memory alloys in North America [J], Mater. Sci. Forum, 9, 327 Johnson, 2001, Applications of shape memory alloys: Advantages disadvantages and limitations [A], 4775, 341 Tohyama, 2001, Shape memory alloy actuators and their reliability [J], Proc. SPIE, 4592, 111, 10.1117/12.448956 Jong, 2014, Hot forging Design of As-cast NiTi shape memory alloy [J], Mater. Res. Bull., 58, 234, 10.1016/j.materresbull.2014.04.049 Jiang, 2012, Microstructure evolution and deformation behavior of as-cast NiTi shape memory alloy under compression [J], Trans. Nonferrous Metals Soc. China, 22, 90, 10.1016/S1003-6326(11)61145-X Huang, 2001, Effect of annealing on the transformation behavior and superelasticity of NiTi shape memory alloy [J], Scr. Mater., 45, 153, 10.1016/S1359-6462(01)01005-3 Kaya, 2016, Shape memory and transformation behavior of high strength 60NiTi in compression [J], Smart Mater. Struct., 25, 10.1088/0964-1726/25/12/125031 Zhang, 2006, Correction of hot compression test data and constitutive equation of NiTi alloy [J], Acta Metall. Sin., 42, 1036 Jiang, 2013, Dynamic recovery and dynamic recrystallization of NiTi shape memory alloy under hot compression deformation [J], T. Nonferr. Metal. Soc., 23, 140, 10.1016/S1003-6326(13)62440-1 Abdollah, 2018, Microstructure and superelastic properties of free forged Ti-Ni shape-memory alloy [J], T. Nonferr. Metal. Soc., 28, 502, 10.1016/S1003-6326(18)64683-7 Aliakbar, 2010, Microstructural evolution during the hot deformation of Ti-55Ni(at.pct) intermetallic alloy [J], Metall. Mater. Trans. A, 41, 2595, 10.1007/s11661-010-0338-8 Jong, 2014, Hot forging design of As-cast Ni Ti shape memory alloy [J], Mater. Res. Bull., 58, 234, 10.1016/j.materresbull.2014.04.049 Yu, 2013, Processing maps of Ti-50. 9Ni shape memory alloy under different strains and instability criteria [J], Raremetals, 37, 702 Lin, 2014, A physically-based constitutive model for a typical nickel-based superalloy [J], Comput. Mater. Sci., 83, 282, 10.1016/j.commatsci.2013.11.003 Tan, 2019, Superplastic behavior of a powder metallurgy superalloy during isothermal compression [J], J. Mater. Sci. Technol., 35, 2591, 10.1016/j.jmst.2019.05.025 Bussiba, 2001, Grain refinement of AZ31 and ZK60 Mg alloys -towards superplasticity studies [J], Mater. Sci. Eng. A, 302, 56, 10.1016/S0921-5093(00)01354-X Poliak, 2007, Initiation of dynamic recrystallization in constant strain rate hot deformation [J], ISIJ Int., 43, 684, 10.2355/isijinternational.43.684 Eleti, 2019, Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy [J], Acta Mater., 171, 132, 10.1016/j.actamat.2019.04.018 Jonas, 2009, The Avrami kinetics of dynamic recrystallization [J], Acta Mater., 57, 2748, 10.1016/j.actamat.2009.02.033 Zhang, 2020, Hot deformation characteristics of novel wrought superalloy GH4975 extruded rod used for 850°C turbine disc [J], Acta Metall. Sin., 56, 1401 Li, 2019, Influence of deformation parameters on dynamic recrystallization of 2195 Al-Li alloy [J], Acta Metall. Sin., 55, 709 Zhang, 2020, Deformation mechanism and dynamic recrystallization of Mg-5.6Gd-0.8Zn alloy during multi-directional forging [J], Acta Metall. Sin., 56, 723 Zhong, 2018, Study on formation mechanism of necklace structure in discontinuous dynamic recrystallization of Incoloy 028 [J], Acta Metall. Sin., 54, 969 Haghdadi, 2020, Dynamic recrystallization in AlxCoCrFeNi duplex high entropy alloys [J], J. Alloys Compd., 830, 10.1016/j.jallcom.2020.154720 McQueen, 2000, Dynamic recovery: sufficient mechanism in the hot deformation of Al (<99.99) [J], Mater. Sci. Eng. A, 290, 28, 10.1016/S0921-5093(00)00933-3 David, 2001, The effect of plastic deformation of austenite on the kinetics of subsequent ferrite formation [J], ISIJ Int., 41, 1028, 10.2355/isijinternational.41.1028 Yang, 2016, Dynamic recrystallization kinetics and nucleation mechanism of Al-Cu-Li alloy based on flow behavior [J], Chin. J. Nonferrous. Met., 26, 365 Chen, 2013, Microstructure evolution and dynamic recrystallization model of 7085 aluminum alloy during hot deformation [J], Chin. J. Nonferrous. Met., 23, 44 Liu, 2012, A new one-parameter kinetics model of dynamic recrystallization and grain size predication [J], Acta Metall. Sin., 48, 1510, 10.3724/SP.J.1037.2012.00486 Prasad, 1998, Processing maps for hot working of titanium alloys[J], Mater. Sci. Eng. A, 243, 82, 10.1016/S0921-5093(97)00782-X Lipińska, 2018, A new hybrid process to produce ultrafine grained aluminium plates [J], Mater. Sci. Eng. A, 714, 105, 10.1016/j.msea.2017.12.096 Sharma, 2018, A fundamental study on qualitatively viable sustainable welding process maps [J], J. Manuf. Syst., 46, 221, 10.1016/j.jmsy.2018.01.002 Vafaeenezhad, 2018, An investigation of workability and flow instability of Sn-5Sb lead free solder alloy during hot deformation [J], Mater. Sci. Eng. A, 718, 87, 10.1016/j.msea.2018.01.097 Sharma, 2018, Constitutive modelling and processing map analysis of tungsten heavy alloy (92.5 W-5.25Ni-2.25Fe) at elevated temperatures [J], Int. J. Refract. Met. H, 76, 168, 10.1016/j.ijrmhm.2018.06.009 Arun Babu, 2018, Hot-workability of super-304H exhibiting continuous to discontinuous dynamic recrystallization transition [J], Mater. Sci. Eng. A, 734, 269, 10.1016/j.msea.2018.07.104 Fouad, 2018, Influence of multi-channel spiral twist extrusion (MCSTE) processing on structural evolution, crystallographic texture and mechanical properties of AA1100 [J], Mater. Sci. Eng. A, 737, 166, 10.1016/j.msea.2018.09.039 Anoop, 2018, Optimization of hot workability and microstructure control in a 12Cr-10Ni precipitation hardenable stainless steel: an approach using processing maps [J], Mater. Charact., 141, 97, 10.1016/j.matchar.2018.04.025 Eskandari Sabzi, 2018, The sequential twinning-transformation induced plasticity effects in a thermomechanically processed high Mn austenitic steel [J], Mater. Sci. Eng. A, 725, 242, 10.1016/j.msea.2018.03.102 Henshall, 1992, Dynamic restoration mechanisms in Al-5.8 at. pct Mg deformed to large strains in the solute drag regime [J], Metall. Trans. A., 23, 881, 10.1007/BF02675565 Kassner, 1989, Large-strain deformation of aluminum single crystals at elevated temperature as a test of the geometric-dynamic-recrystallization concept [J], Metall. Trans. A., 20, 2182, 10.1007/BF02650307