Structure, evolution and action of vitamin B6-dependent enzymes

Current Opinion in Structural Biology - Tập 8 Số 6 - Trang 759-769 - 1998
Johan N. Jansonius1
1Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

John, 1995, Pyridoxal phosphate-dependent enzymes, Biochim Biophys Acta, 1248, 81, 10.1016/0167-4838(95)00025-P

Hayashi, 1995, Pyridoxal enzymes: mechanistic diversity and uniformity, J Biochem, 118, 463, 10.1093/oxfordjournals.jbchem.a124931

Metzler, 1977

Ford, 1980, Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase, Proc Natl Acad Sci USA, 77, 2559, 10.1073/pnas.77.5.2559

Christen, 1985

Jansonius, 1987, Structural basis for catalysis by aspartate aminotransferase, 3, 187

Hyde, 1988, Three-dimensional structure of the tryptophan synthase α2β2 multienzyme complex from Salmonella typhimurium, J Biol Chem, 263, 17857, 10.1016/S0021-9258(19)77913-7

Watanabe, 1989, Crystal structure analysis of ω-amino acid:pyruvate aminotransferase with a newly developed Weissenberg camera and an imaging plate using synchrotron radiation, J Biochem, 105, 1, 10.1093/oxfordjournals.jbchem.a122600

Toney, 1993, Dialkylglycine decarboxylase structure: bifunctional active site and alkali metal sites, Science, 261, 756, 10.1126/science.8342040

Toney, 1995, Structural and mechanistic analysis of two refined crystal structures of the pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase, J Mol Biol, 245, 151, 10.1006/jmbi.1994.0014

Antson, 1993, Three-dimensional structure of tyrosine phenol-lyase, Biochemistry, 32, 4195, 10.1021/bi00067a006

Momany, 1995, Structural motifs for pyridoxal-5′-phosphate binding in decarboxylases: an analysis based on the crystal structure of the Lactobacillus 30a ornithine decarboxylase, Protein Sci, 4, 849, 10.1002/pro.5560040504

Momany, 1995, Crystallographic structure of a PLP-dependent ornithine decarboxylase from Lactobacillus 30a to 3.0 Å resolution, J Mol Biol, 252, 643, 10.1006/jmbi.1995.0526

Clausen, 1996, Crystal structure of the pyridoxal-5′-phosphate dependent cystathionine β-lyase from Escherichia coli at 1.83 Å, J Mol Biol, 262, 202, 10.1006/jmbi.1996.0508

Sugio, 1995, Crystal structure of a d-amino acid aminotransferase: how the protein controls stereoselectivity, Biochemistry, 34, 9661, 10.1021/bi00030a002

Mehta, 1989, Evolutionary relationships among aminotransferases. Tyrosine aminotransferase, histidinol-phosphate aminotransferase, and aspartate aminotransferase are homologous proteins, Eur J Biochem, 186, 249, 10.1111/j.1432-1033.1989.tb15202.x

Mehta, 1993, Aminotransferases: demonstration of homology and division into evolutionary subgroups, Eur J Biochem, 214, 549, 10.1111/j.1432-1033.1993.tb17953.x

Alexander, 1994, Evolutionary relationships among pyridoxal-5′-phosphate-dependent enzymes. Regio-specific α, β and γ families, Eur J Biochem, 219, 953, 10.1111/j.1432-1033.1994.tb18577.x

Sandmeier, 1994, Multiple evolutionary origin of pyridoxal-5′-phosphate-dependent amino acid decarboxylases, Eur J Biochem, 221, 997, 10.1111/j.1432-1033.1994.tb18816.x

Mehta, 1994, Homology of 1-aminocyclopropane-1-carboxylate synthase, 8-amino-7-oxononanoate synthase, 2-amino-6-caprolactam racemase, 2,2-dialkylglycine decarboxylase, glutamate-1-semialdehyde 2,1-aminomutase and isopenicillin-N-epimerase with aminotransferases, Biochem Biophys Res Commun, 198, 138, 10.1006/bbrc.1994.1020

Grishin, 1995, Modeling of the spatial structure of eukaryotic ornithine decarboxylases, Protein Sci, 4, 1291, 10.1002/pro.5560040705

Shaw, 1997, Determination of the structure of alanine racemase from Bacillus stearothermophilus at 1.9 Å resolution, Biochemistry, 36, 1329, 10.1021/bi961856c

Jeffery, 1998, Crystal structure of Saccharomyces cerevisiae cytosolic aspartate aminotransferase, Protein Sci, 7, 1380, 10.1002/pro.5560070614

Okamoto, 1994, X-ray crystallographic study of pyridoxal 5′-phosphate-type aspartate aminotransferases from Escherichia coli in open and closed form, J Biochem, 116, 95, 10.1093/oxfordjournals.jbchem.a124509

Malashkevich, 1995, Crystal structure of the closed form of chicken cytosolic aspartate aminotransferase at 1.9 Å resolution, J Mol Biol, 247, 111, 10.1006/jmbi.1994.0126

McPhalen, 1992, X-ray structure refinement and comparison of three forms of mitochondrial aspartate aminotransferase, J Mol Biol, 225, 495, 10.1016/0022-2836(92)90935-D

McPhalen, 1992, Domain closure in mitochondrial aspartate aminotransferase, J Mol Biol, 227, 197, 10.1016/0022-2836(92)90691-C

Winefield, 1995, Evolutionary analysis of aspartate aminotransferases, J Mol Evol, 40, 455, 10.1007/BF00164031

Birolo, 1991, The active site of Sulfolobus solfataricus aspartate aminotransferase, Biochim Biophys Acta, 1080, 198, 10.1016/0167-4838(91)90002-H

Hennig, 1997, Crystal structure of glutamate-1-semialdehyde aminomutase: an α2-dimeric vitamin B6-dependent enzyme with asymmetry in structure and active site reactivity, Proc Natl Acad Sci USA, 94, 4866, 10.1073/pnas.94.10.4866

Jansonius, 1994, Crystallographic studies on the vitamin B6-assisted enzymic transamination reaction, 29

Shen, 1998, Crystal structure of human recombinant ornithine aminotransferase, J Mol Biol, 277, 81, 10.1006/jmbi.1997.1583

Shah, 1997, Human ornithine aminotransferase complexed with L-canaline and gabaculine: structural basis for substrate recognition, Structure, 5, 1067, 10.1016/S0969-2126(97)00258-X

Soper, 1982, Inactivation of pyridoxal phosphate enzymes by gabaculine, J Biol Chem, 257, 13930, 10.1016/S0021-9258(19)45322-2

Bolkenius, 1990, DL canaline and 5-fluoromethylornithine, Biochem J, 268, 409, 10.1042/bj2680409

Sundararaju, 1997, The crystal structure of Citrobacter freundii tyrosine phenol-lyase complexed with 3-(4′-hydroxyphenyl)propionic acid, together with site-directed mutagenesis and kinetic analysis, demonstrates that arginine 381 is required for substrate specificity, Biochemistry, 36, 6502, 10.1021/bi962917+

Pletnev, 1997, Crystallographic study of tyrosine phenol-lyase from Erwinia herbicola, Crystallography Reports, 42, 809

Isupov, 1998, Crystal structure of tryptophanase, J Mol Biol, 276, 603, 10.1006/jmbi.1997.1561

Hohenester, 1994, An alkali metal ion size-dependent switch in the active site structure of dialkylglycine decarboxylase, Biochemistry, 33, 13561, 10.1021/bi00250a008

Clausen, 1997, Slow-binding inhibition of Escherichia coli cystathionine β-lyase by l-aminoethoxyvinylglycine: a kinetic and X-ray study, Biochemistry, 36, 12633, 10.1021/bi970630m

Peisach, 1998, Crystallographic study of steps along the reaction pathway of d-amino acid aminotransferase, Biochemistry, 37, 4958, 10.1021/bi972884d

Rhee, 1997, Crystal structures of a mutant (βK87T) tryptophan synthase α2β2 complex with ligands bound to the active sites of the α- and β- subunits reveal ligand-induced conformational changes, Biochemistry, 36, 7664, 10.1021/bi9700429

Schneider, 1998, Loop closure and intersubunit communication in tryptophan synthase, Biochemistry, 37, 5394, 10.1021/bi9728957

Clausen, 1997, Mode of action of cystathionine β-lyase, Biol Chem, 378, 321

Rhee, 1996, Exchange of K+ or Cs+ for Na+ induces local and long-range changes in the three-dimensional structure of the tryptophan synthase α2β2 complex, Biochemistry, 35, 4211, 10.1021/bi952506d

Rhee, 1998, Cryo-crystallography of a true substrate, indole-3-glycerol phosphate, bound to a mutant (αD60N) tryptophan synthase α2β2 complex reveals the correct orientation of active site αGlu49, J Biol Chem, 273, 8553, 10.1074/jbc.273.15.8553

Yang, 1997, Importance of conserved and variable C-terminal residues for the activity and thermal stability of the β subunit of tryptophan synthase, J Biol Chem, 272, 7859, 10.1074/jbc.272.12.7859

Rowlett, 1998, Mutations in the contact region between the α and β subunits of tryptophan synthase alter subunit interaction and intersubunit communication, Biochemistry, 37, 2961, 10.1021/bi972286z

Gallagher, 1998, Structure and control of pyridoxal phosphate dependent allosteric threonine deaminase, Structure, 6, 465, 10.1016/S0969-2126(98)00048-3

Schuller, 1995, Crystal structure reveals the allosteric ligand site in the Vmax-type cooperative enzyme: d-3-phosphoglycerate dehydrogenase, Nat Struct Biol, 2, 69, 10.1038/nsb0195-69

Burkhard, 1998, Three-dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium, J Mol Biol, 283, 121, 10.1006/jmbi.1998.2037

Dunathan, 1966, Conformation and reaction specificity in pyridoxal phosphate enzymes, Proc Natl Acad Sci USA, 55, 712, 10.1073/pnas.55.4.712

Kishimoto, 1997, Mutation of arginine 98, which serves as a substrate-recognition site of d-amino acid aminotransferase, can be partly compensated for by mutation of tyrosine 88 to an arginyl residue, J Biochem, 122, 1182, 10.1093/oxfordjournals.jbchem.a021879

Yoshimura, 1993, Unique stereospecificity of d-amino acid aminotransferase and branched-chain l-amino acid aminotransferase for C-4′ hydrogen transfer of the coenzyme, J Am Chem Soc, 115, 3897, 10.1021/ja00063a007

Okada, 1997, Three-dimensional structure of Escherichia coli branched-chain amino acid aminotransferase at 2.5 Å resolution, J Biochem, 121, 637, 10.1093/oxfordjournals.jbchem.a021633

Bruntner, 1998, The Streptomyces tendae Tü901 L-lysine 2-aminotransferase catalyzes the initial reaction in nikkomycin D biosynthesis, Eur J Biochem, 254, 347, 10.1046/j.1432-1327.1998.2540347.x

Stamper, 1998, Reaction of alanine racemase with 1-amino ethyl phosphonic acid forms a stable external aldimine, Biochemistry, 37, 10438, 10.1021/bi980692s

Okamoto, 1998, Crystal structures of Parococcus denitrificans aromatic amino acid aminotransterase: a substrate recognition site constructed by rearrangement of hydrogen bond network, J Mol Biol, 280, 433, 10.1006/jmbi.1998.1869

Renwick, 1998, The crystal stucture of human cytosolic serine hydroxymethyltransferase: a target for cancer chemotherapy, Structure, 6, 1105, 10.1016/S0969-2126(98)00112-9