Structure and mechanical properties of an aluminum alloy 1570 subjected to severe plastic deformation by high-pressure torsion

M. Yu. Murashkin1, Askar Kilmametov1, Ruslan Z. Valiev1
1Ufa state aviation technical university,

Tóm tắt

Từ khóa


Tài liệu tham khảo

R. Z. Valiev, A. V. Korznikov, and R. R. Mulyukov, “Structure and Properties of Metallic Materials with a Submicron-Grained Structure,” Fiz. Met. Metalloved. 73(4), 70–86 (1992) Phys. Met. Metallogr. 73, 373–384 (1992).

M. V. Markushev and M. Yu. Murashkin, “Mechanical Properties of Submicrocrystalline Aluminum Alloys after Severe Plastic Deformation by Angular Pressing,” Fiz. Met. Metalloved. 90(5), 92–101 (2000) [Phys. Met. Metallogr. 90 (5), 506–515 (2000)].

H. J. Roven, H. Nesboe, J. C. Werenskiold, and T. Seibert, “Mechanical Properties of Aluminium Alloys Processed by SPD: Comparison of Different Alloy Systems and Possible Product Areas,” Mater. Sci. Eng., A, 410–411, 426–429 (2005).

R. Z. Valiev and T. G. Langdon, “Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement,” Prog. Mater. Sci. 51, 881–981 (2006).

Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, “Proposal of Novel Ultra-High Straining Process for Bulk Material Development of the Accumulative Roll-Bonding (ARB) Process,” Proc. of Sixth Int. Conf. on Aluminum Alloys (ICAA-6) (Jpn. Inst. Light Alloys, 1998), Vol. 3, pp. 2003–2008.

Y. Zhao, X. Liao, S. Cheng, et al., “Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys,” Adv. Mater., 18(17), 2280–2283 (2006).

W. J. Kim, C. S. Chung, D. S. Ma, et al., “Optimization of Strength and Ductility of 2024 Al by Equal Channel Angular Pressing (ECAP) and Post-ECAP Aging,” Scr. Mater., 49, 333–338 (2003).

Y. H. Zhao, Z. Jin, X. Z. Liao, et al., “Microstructures and Mechanical Properties of Ultrafine Grained 7075 Al Alloy Processed by ECAP and Their Evolutions during Annealing,” Acta Mater., 52, 4589–4599 (2004).

M. V. Markushev and M. Yu. Murashkin, “Strength and Crack Resistance of Commercial Aluminum Alloys 1560 and 5083 of the Al-Mg-Mn System after Severe Plastic Deformation via Angular Pressing,” Fiz. Met. Metalloved. 98(2), 116–128 (2004) [Phys. Met. Metallogr. 98 (2), 221–233 (2004)].

M. Yu. Murashkin, M. V. Markushev, Yu. V. Ivanisenko, and R. Z. Valiev, “Strength of Commercial Aluminum Alloys after Equal Channel Angular Pressing and Post-ECAP Processing,” Solid State Phenom. 114, 91–96 (2006).

Z. Horita, K. Ohashi, T. Fujita, et al., “Achieving High Strength and High Ductility in Precipitation-Hardened Alloys,” Adv. Mater., 17, 1599–1603 (2005).

C. S. Chung, J. K. Kim, H. K. Kim, and W. J. Kim, “Improvement of High-Cycle Fatigue in a 6061 Al Alloy Produced by Equal Channel Angular Pressing,” Mater. Sci. Eng., A, 337, 39–44 (2002).

M. Kh. Rabinovich, M. V. Markushev, and M. Yu. Murashkin, “Peculiarities of Microcrystalline Structure Formation at Strain-Thermal Treatment of 1420 Alloy at Different Starting States,” Metalloved. Term. Obrab. Met., No. 4, 36–39 (1997).

R. K. Islamgaliev, D. A. Salimonenko, L. O. Shestakova, and R. Z. Valiev, “High-Strength State of Ultrafine-Grained Aluminum Alloys,” Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 6, 196–201 (1997).

V. V. Stolyarov, V. V. Latysh, V. A. Shundalov, et al., “Influence of Severe Plastic Deformation on Aging Effect of Al-Zn-Mg-Cu-Zr Alloy,” Mat. Sci. Eng., A, 81, 339–342 (1997).

R. S. Mishra, R. Z. Valiev, S. X. McFadden, et al., “High-Strain-Rate Superplasticity from Nanocrystalline Al Alloy 1420 at Low Temperature,” Philos. Mag. A, 81, 37–48 (2001).

R. K. Islamgaliev, R. Z. Valiev, R. S. Mishra, and A. K. Mukherjee, “Enhanced Superplastic Properties in Bulk Metastable Nanostructured Alloys,” Mater. Sci. Eng., A, 304–306, 206–210 (2001).

Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon, “Factor Influencing the Equilibrium Grain Size in Equal-Channel Angular Pressing: Role of Mg Addition to Aluminum,” Metal. Trans. A 29A, 2503–2510 (1998).

M. Furukawa, Z. Horita, R. Z. Valiev, and T. G. Langdon, “Microhardness Measurements and the Hall-Petch Relationship in an Al-Mg Alloy with Submicrometer Grain Size,” Acta Mater. 44, 4619–4629 (1996).

S. V. Dobatkin, V. V. Zakharov, and R. Z. Valiev, et al., “Nano-and Submicrocrystalline Structure Formation during High Pressure Torsion of Al-Sc and Al-Mg-Sc Alloys,” in Nanomaterials by Severe Plastic Deformation, Ed. by M. Zehetbauer and R.Z. Valiev (Wiley, Berlin, 2003), pp. 158–164.

J. Wang, Y. Iwahashi, Z. Horita, et al., “An Investigation of Microstructural Stability in an Al-Mg Alloy with Submicrometer Grain Size,” Acta Mater. 44, 2973–2982 (1996).

R. Z. Valiev, G. I. Raab, D. V. Gunderov, et al., “The Development of Methods of Severe Plastic Deformation for the Production of Bulk Nanostructured Materials with Unique Mechanical Properties,” Nanotekhnika, No. 2, 32–41 (2006).

A. Vorhauer and R. Pippan, “On the Homogeneity of Deformation by High Pressure Torsion,” Scr. Mater., 51, 921–925 (2004).

A. P. Zhilyaev, K. Oh-ishi, T. G. Langdon, and T. R. McNelley, “Microstructural Evolution in Commercial Purity Aluminum during High Pressure Torsion,” Mater. Sci. Eng., A, 410–411, 277–280 (2005).

T. Ungar and A. Borbely, “The Effect of Dislocation Contrast on X-ray Line Broadening: A New Approach to Line Profile Analysis,” Appl. Phys. Lett., 69, 3173–3175 (1996).

S. S. Gorelik, Yu. A. Skakov, and Yu. A. Rastorguev, X-ray and Electron Optic Analysis (MISIS, Moscow, 1994) [in Russian].

P. G. Sanders, A. B. Withey, J. R. Weertman, et al., “Residual Stress, Strain, and Faults in Nanocrystalline Palladium and Copper,” Mater. Sci. Eng., A, 204, 7–15 (1995).

I. I. Novikov and K. M. Rozin, Crystallography and Crystal Structure Defects (Metallurgiya, Moscow, 1990) [in Russian].

O. B. Kulyasova, R. K. Islamgaliev, and R. Z. Valiev, “On the Specific Features of Tensile Tests of Small Samples of Nanostructured Materials,” Fiz. Met. Metalloved. 100(3), 83–90 (2005) [Phys. Met. Metallogr. 100 (3), 277–283 (2005)].

R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructural Metallic Materials: Formation, Structure and Properties (Akademkniga, Moscow, 2007) [in Russian].

L. N. Gusev, M. F. Nikitina, L. K. Dolinskaya, and I. V. Egiz, “Effect of Alloying on the Decomposition of Aluminum-Magnesium Solid Solution,” Izv. Akad. Nauk SSSR, Met., No. 4, 208–213 (1972).

Aluminum: Properties and Physical Metallurgy, Ed. by J. E. Hatch (AMS, Metals Park, Ohio, 1984; Metallurgiya, Moscow, 1989).

A. A. Mazilkin, B. B. Straumal, S. G. Protasova, et al., “Structural Changes in Aluminum Alloys upon Severe Plastic Deformation,” Fiz. Tverd. Tela 49(5), 824–829 (2007) [Phys. Solid State 49 (5), 868–873 (2007).

I. I. Velichko, G. V. Dodin, B. K. Metelev, et al., “Specific Properties of 01570 and 01421 Alloys with Scandium and Their Application,” Telhn. Legk. Splavov, No. 5, 19–23 (1997).

D. Witkin, Z. Lee, R. Rodriguez, et al., “Al-Mg Alloy Engineered with Bimodal Grain Size for High Strength and Increased Ductility,” Scr. Mater., 49, 297–302 (2003).

I. P. Newbery, S. R. Nutt, and E. J. Lavernia, “Multi-Scale Al 5083 for Military Vehicles with Improved Performance,” JOM, 58, 56–61 (April 2006).

Z. N. Archakova, G. A. Balakhontsev, I. G. Basova, et al., Structure and Properties of Half-Finished Products from Aluminum Alloys: A Handbook (Metallurgiya, Moscow, 1984) [in Russian].

Aging of Alloys, Translated from English, Ed. by M. I. Zakharova (Metallurgizdat, Moscow, 1962) [in Russian].

S. M. Klotsman, “Impurity States and Diffusion in Grain Boundaries,” Usp. Fiz. Nauk 160(1), 99–139 (1990).

T. Fujita, Z. Horita, and T. G. Langdon, “Characteristics of Diffusion in Al-Mg Alloys with Ultrafine Grain Sizes,” Philos. Mag. A 82(11), 2249–2262 (2002).

T. Ungar, E. Schafler, P. Hanak, et al., “Vacancy Concentrations Determined from the Diffuse Background Scattering of X-rays in Plastically Deformed Copper,” Z. Metallkd. 96, 578–583, (2005)

I. Kaur, W. Gust, and L. Kozma, Handbook of Grain and Interphase Boundary Diffusion Data (Ziegler, Stuttgart, 1989), Vol. 1, p. 386.