Structure and Trophic Relations in Hypersaline Environments
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alimov, A.F., Relations between biological diversity in continental waterbodies and their morphometry and water mineralization, Inland Water Biol., 2008, vol. 1, no. 1, pp. 1–6.
Anufriieva, E.V., Do copepods inhabit hypersaline waters worldwide? A short review and discussion, Chin. J. Oceanol. Limnol., 2015, vol. 33, no. 6, pp. 1354–1361.
Anufriieva, E.V., Cyclopoida in hyperhaline reservoirs of Crimea and the World: diversity, impact of environmental factors, and ecological role, Zh. Sib. Fed. Univ.,Ser. Biol., 2016, vol. 9, no. 4, pp. 398–408.
Anufriieva, E.V. and Shadrin, N.V., Morphometric variability of Arctodiaptomus salinus (Copepoda) in the Mediterranean-Black Sea region, Zool. Res., 2015, vol. 36, no. 6, pp. 328–336.
Anufriieva, E.V., Shadrin, N.V., and Shadrina, S.N., History of research on biodiversity in Crimean hypersaline waters, Arid Ecosyst., 2017, vol. 7, no. 1, pp. 52–58.
Asencio, A.D., Permanent salt evaporation ponds in a semi-arid Mediterranean region as model systems to study primary production processes under hypersaline conditions, Estuarine, Coastal Shelf Sci., 2013, vol. 124, pp. 24–33.
Atanasova, N.S., Roine, E., Oren, A., Bamford, D.H., and Oksanen, H.M., Global network of specific virus–host interactions in hypersaline environments, Environ. Microbiol., 2012, vol. 14, no. 2, pp. 426–440.
Balushkina, E.V., Golubkov, S.M., Golubkov, M.S., Litvinchuk, L.F., and Shadrin, N.V., Effect of abiotic and biotic factors on structural-functional organization of ecosystems of saline lakes of Crimea, Zh. Obshch. Biol., 2009, vol. 70, no. 6, pp. 504–514.
Beisner, B.E., Haydon, D.T., and Cuddington, K., Alternative stable states in ecology, Front. Ecol. Environ., 2003, vol. 1, no. 7, pp. 376–382.
Belovsky, G.E., Stephens, D., Perschon, C., Birdsey, P., Paul, D., Naftz, D., Baskin, R., Larson, C., Mellison, C., Luft, J., Mosley, R., Mahon, H., van Leeuwen, J., and Allen, D.V., The Great Salt Lake ecosystem (Utah, USA): long term data and a structural equation approach, Ecosphere, 2011, vol. 2, no. 3, pp. 1–40.
Chen, H. and Jiang, J.G., Osmotic responses of Dunaliella to the changes of salinity, J. Cell. Physiol., 2009, vol. 219, no. 2, pp. 251–258.
Cohen, Y., Krumbein, W.E., Goldberg, M., and Shilo, M., Solar lake (Sinai). 1. Physical and chemical limnology, Limnol. Oceanogr., 1977a, vol. 22, no. 4, pp. 597–608.
Cohen, Y., Krumbein, W.E., and Shilo, M., Solar Lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production, Limnol. Oceanogr., 1977b, vol. 22, no. 4, pp. 609–620.
Danil’chenko, P.T. and Ponizovskii, A.M., Gidrokhimiya Sivasha (Hydrochemistry of Sivash Lake), Moscow: Akad. Nauk SSSR, 1954.
Detkova, E.N. and Boltyanskaya, Yu.V., Osmoadaptation of haloalkaliphilic bacteria: role of osmoregulators and their possible practical application, Microbiology (Moscow), 2007, vol. 76, no. 5, pp. 511–522.
Drapun, I., Anufriieva, E., Shadrin, N., and Zagorodnyaya, Y., Ostracods in the plankton of the Sivash Bay (the Sea of Azov) during its transformation from brackish to hypersaline state, Ecol. Montenegrina, 2017, vol. 14, pp. 102–108.
Edgcomb, V., Orsi, W., Leslin, C., Epstein, S.S., Bunge, J., Jeon, S., and Stoeck, T., Protistan community patterns within the brine and halocline of deep hypersaline anoxic basins in the eastern Mediterranean Sea, Extremophiles, 2009, vol. 13, no. 1, pp. 151–167.
Elloumi, J., Guermazi, W., Ayadi, H., Bouain, A., and Aleya, L., Abundance and biomass of prokaryotic and eukaryotic microorganisms coupled with environmental factors in an arid multi-pond solar saltern (Sfax, Tunisia), J. Mar. Biol. Assoc. U.K., 2009, vol. 89, no. 2, pp. 243–253.
Emerson, J.B., Andrade, K., Thomas, B.C., Norman, A., Allen, E.E., Heidelberg, K.B., and Banfield, J.F., Virus-host and CRISPR dynamics in Archaea-dominated hypersaline Lake Tyrrell, Victoria, Australia, Archaea, 2013, vol. 2013, p. 370871. https://doi.org/10.1155/2013/370871
Esteban, G.F. and Finlay, B.J., Cryptic freshwater ciliates in a hypersaline lagoon, Protist, 2003, vol. 154, nos. 3–4, pp. 411–418.
Gerasimenko, L.M., Nekrasova, V.K., Orleanskii, V.K., Venetskaya, S.Ya., and Zavarzin, G.A., Primary production of halophilic cyanobacterial communities, Mikrobiologiya (Moscow), 1989, vol. 58, no. 3, pp. 507–514.
Goh, F., Barrow, K.D., Burns, B.P., and Neilan, B.A., Identification and regulation of novel compatible solutes from hypersaline stromatolite-associated cyanobacteria, Arch. Microbiol., 2010, vol. 192, no. 12, pp. 1031–1038.
Golubkov, S., Kemp, R., Golubkov, M., Balushkina, E., Litvinchuk, L., and Gubelit, Y., Biodiversity and the functioning of hypersaline lake ecosystems from Crimea Peninsula (Black Sea), Arch. Hydrobiol., 2007, vol. 169, no. 1, pp. 79–87.
Ivanova, M., Balushkina, E., and Basova, S., Structural functional reorganization of ecosystem of hyperhaline Lake Saki (Crimea) at increased salinity, Russ. J. Aquat. Ecol., 1994, vol. 3, no. 2, pp. 111–126.
Ivlev, V.S., Experimental Ecology of the Feeding of Fishes, New Haven: Yale Univ. Press, 1961.
Ivlev, V.S., Heterotrophic part of the production process, Tr. Sevastop. Biol. Stn.,Akad. Nauk Ukr. SSR, 1964, vol. 15, pp. 460–471.
Jellison, R. and Melack, J.M., Photosynthetic activity of phytoplankton and its relation to environmental factors in hypersaline Mono Lake, California, Hydrobiologia, 1988, vol. 158, no. 1, pp. 69–88.
Jia, Q., Anufriieva, E., Liu, X., Kong, F., and Shadrin, N., Intentional introduction of Artemia sinica (Anostraca) in the high-altitude Tibetan Lake Dangxiong Co: the new population and consequences for the environment and for humans, Chin. J. Oceanol. Limnol., 2015, vol. 33, pp. 1451–1460.
Joint, I., Henriksen, P., Garde, K., and Riemann, B., Primary production, nutrient assimilation and microzooplankton grazing along a hypersaline gradient, FEMS Microbiol. Ecol., 2002, vol. 39, no. 3, pp. 245–257.
Khlebovich, V.V., Critical salinity–homeostasis–sustainable development, Tr. Zool. Inst., Ross. Akad. Nauk, 2013, no. 3, pp. 3–6.
Kokkinn, M.J., Osmoregulation, salinity tolerance and the site of ion excretion in the halobiont chironomid, Tanytarsus barbitarsis Freeman, Aust. J. Mar. Freshwater Res., 1986, vol. 37, pp. 243–250.
Kolesnikova, E.A., Mazlumyan, S.A., and Shadrin, N.V., Seasonal dynamics of meiobenthos fauna from a salt lake of the Crimea, Proc. Firth Int. Conf. on Environmental Micropaleontology, Microbiology and Meiobenthology (EMMM), Chennai, 2008, pp. 155–158.
Kopylov, A.I. and Kosolapov, D.B., Mikrobnaya “petlya” v planktonnykh soobshchestvakh morskikh i presnovodnykh ekosistem (Microbial Loop in Planktonic Communities of Marine and Freshwater Ecosystems), Izhevsk: KnigoGrad, 2011.
Kotlova, E.R. and Shadrin, N.V., Involvement of membrane lipids in adaptation of Cladophora (Chlorophyta) to the shallow lakes with different salinity degree, Bot. Zh., 2003, vol. 88, no. 5, pp. 38.
Kurnakov, N.S., Kuznetsov, V.G., Dzens-Litovskii, A.I., and Ravich, M.I., Solyanye ozera Kryma (Saline Lakes of Crimea), Moscow: Akad. Nauk SSSR, 1936.
Mikhodyuk, O.S., Gerasimenko, L.M., Venetskaya, Yu.Yu., and Shadrin, N.V., Anoxygenic photosynthesis in plankton of the Crimean saline lakes: first evaluation, Morsk. Ekol. Zh., 2008, vol. 7, no. 3, p. 50.
Mishra, A. and Jha, B., Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress, Bioresour. Technol., 2009, vol. 100, no. 13, pp. 3382–3386.
Moscatello, S. and Belmonte, G., Zooplankton species composition and seasonal evolution in a hypersaline temporary pond of the Mediterranean coast (the “Vecchia Salina”, Torre Colimena, SE Italy), Sci. Mar., 2004, vol. 68, suppl. 1, pp. 85–102.
Mukhanov, V.S., Naidanova, O.G., Shadrin, N.V., and Kemp, R.B., The spring energy budget of the algal mat community in a Crimean hypersaline lake determined by microcalorimetry, Aquat. Ecol., 2004, vol. 38, no. 3, pp. 375–385.
Oren, A., Saltern evaporation ponds as model systems for the study of primary production processes under hypersaline conditions, Aquat. Microb. Ecol., 2009, vol. 56, nos. 2–3, pp. 193–204.
Oren, A., Thermodynamic limits to microbial life at high salt concentrations, Environ. Microbiol., 2011, vol. 13, no. 8, pp. 1908–1923.
Pavlovskaya, T.M., Prazukin, A.V., and Shadrin, N.V., Seasonal changes in the community of ciliates from hyperhaline Lake Khersonesskoe (Crimea), Morsk. Ekol. Zh., 2009, vol. 8, no. 2, pp. 53–63.
Pedrós-Alió, C., Calderón-Paz, J.I., MacLean, M.H., Medina, G., Marrasé, C., Gasol, J.M., and Guixa-Boixereu, N., The microbial food web along salinity gradients, FEMS Microbiol. Ecol., 2000, vol. 32, no. 2, pp. 143–155.
Pinder, A.M., Halse, S.A., McRae, J.M., and Shiel, R.J., Occurrence of aquatic invertebrates of the wheatbelt region of Western Australia in relation to salinity, Hydrobiologia, 2005, vol. 543, no. 1, pp. 1–24.
Ponizovskii, A.M., Solyanye resursy Kryma (Salt Resources of Crimea), Simferopol: Krym, 1965.
Por, F.D., A classification of hypersaline waters based on trophic criteria, Mar. Ecol., 1980, vol. 1, no. 2, pp. 121–131.
Post, F.J., Borowitzka, L.J., Borowitzka, M.A., Mackay, B., and Moulton, T., The protozoa of Western Australian hypersaline lagoon, Hydrobiologia, 1983, vol. 105, no. 1, pp. 95–113.
Prazukin, A.V., Bobkova, A.N., Evstigneeva, I.K., Tankovskaya, I.N., and Shadrin, N.V., The structure and seasonal dynamics of the phytocomponents of the nonliving system of the marine hypersaline lake at Cape Khersones (Crimea), Morsk. Ekol. Zh., 2008, vol. 7, no. 1, pp. 61–79.
Rippingale, R.J. and Hodgkin, E.P., Food availability and salinity tolerance in a brackish water copepod, Mar. Freshwater Res., 1977, vol. 28, no. 1, pp. 1–7.
Rossi, F. and De Philippis, R., Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats, Life, 2015, vol. 5, no. 2, pp. 1218–1238.
Senicheva, M.I., Gubelit, Yu.I., Prazukin, A.V., and Shadrin, N.V., Phytoplankton of hyperhaline lakes of Crimea, in Mikrovodorosli Chernogo morya: problemy sokhraneniya bioraznoobraziya i biotekhnologicheskogo ispol’zovaniya (The Black Sea Microalgae: Biodiversity Conservation and Biotechnological Use), Sevastopol: EKOSI-Gidrofizika, 2008, pp. 93–99.
Shadrin, N.V., Is it possible to quantitatively assess the role of algobacterial films in a water body? in Fossil and Recent Biofilms, New York: Springer-Verlag, 2003, pp. 353–361.
Shadrin, N.V., Dynamics of ecosystems and evolution: multiplicity of steady states and the points of rollover/non-return. New concept, Morsk. Ekol. Zh., 2012, vol. 11, no. 2, pp. 85–95.
Shadrin, N.V., Alternative steady states of lake ecosystems and critical salinity: is there a particular relation? Tr. Zool. Inst.,Ross. Akad. Nauk, 2013, suppl. 3, pp. 214–221.
Shadrin, N., Alternative states of saline lake ecosystems and development of salinology, Acta Geol. Sin. (Engl. Ed.), 2014, vol. 88, suppl. 1, pp. 434–435.
Shadrin, N.V., Hypersaline lakes as polyextreme habitats for life, in Introduction to Salt Lake Sciences, Beijing: Science Press, 2018, pp. 180–187.
Shadrin, N.V. and Anufriieva, E.V., Climate change impact on the marine lakes and their Crustaceans: The case of marine hypersaline Lake Bakalskoye (Ukraine), Turk. J. Fish. Aquat. Sci., 2013a, vol. 13, pp. 603–611.
Shadrin, N.V. and Anufriieva, E.V., Dependence of Arctodiaptomus salinus (Calanoida, Copepoda) halotolerance on exoosmolytes: new data and a hypothesis, J. Medit. Ecol., 2013b, vol. 12, pp. 21–26.
Shadrin, N.V. and Naidanova, O.G., Bottom cyanobacteria in continental hyperhaline lakes of Crimea: preliminary report, Ekol. Morya, 2002, no. 61, pp. 36–38.
Shadrin, N.V., Mikhodyuk, O.S., Naidanova, O.G., Voloshko, L.N., and Gerasimenko, L.M., Hypersaline lakes of Crimea: general features, in Mikrovodorosli Chernogo morya: problemy sokhraneniya bioraznoobraziya i biotekhnologicheskogo ispol’zovaniya (The Black Sea Microalgae: Biodiversity Conservation and Biotechnological Use), Sevastopol: EKOSI-Gidrofizika, 2008, pp. 100–112.
Shadrin, N., Zheng, M., and Oren, A., Past, present, and future of saline lakes: research for global sustainable development, Chin. J. Oceanol. Limnol., 2015, vol. 33, no. 6, pp. 1349–1353.
Shadrin, N.V., Sergeeva, N.G., Latushkin, A.A., Kolesnikova, E.A., Kipriyanova, L.A., Anufriieva, E.V., and Chepyzhenko, A.A., Transformation of the Sivash Bay (Sea of Azov) in increasing salinity: change of meiobenthos and other ecosystem components (2013–2015), Zh. Sib. Fed. Univ.,Ser. Biol., 2016, vol. 9, no. 4, pp. 452–466.
Shadrin, N.V., Anufriieva, E.V., and Shadrina, S.N., Brief review of phototrophs of hypersaline lakes and lagoons of Crimea: diversity, ecological role, and possible use, Morsk. Biol. Zh., 2017a, vol. 2, no. 2, pp. 80–85.
Shadrin, N.V., Anufriieva, E.V., Belyakov, V.P., and Bazhora, A.I., Chironomidae larvae in hypersaline waters of the Crimea: diversity, distribution, abundance and production, Eur. Zool. J., 2017b, vol. 84, pp. 61–72.
Steele, D.J., Franklin, D.J., and Underwood, G.J., Protection of cells from salinity stress by extracellular polymeric substances in diatom biofilms, Biofouling, 2014, vol. 30, no. 8, pp. 987–998.
Stoecker, D.K., Gustafson, D.E., Baier, C.T., and Black, M.M., Primary production in the upper sea ice, Aquat. Microb. Ecol., 2000, vol. 21, no. 3, pp. 275–287.
Swanson, C., Interactive effects of salinity on metabolic rate, activity, growth and osmoregulation in the euryhaline milkfish (Chanos chanos), J. Exp. Biol., 1998, vol. 201, no. 24, pp. 3355–3366.
Thomas, D.N. and Dieckmann, G.S., Antarctic sea ice a habitat for extremophiles, Science, 2002, vol. 295, no. 5555, pp. 641–644.
Vasil’eva, L.V., Berestovskaya, Yu.Yu., Samylina, O.S., Gerasimenko, L.M., and Shadrin, N.V., Seasonal changes of heterotrophic bacterioplankton in saline lakes of Crimea, Morsk. Ekol. Zh., 2008, vol. 7, no. 40, p. 40.
Wang, J., Yang, D., Zhang, Y., Shen, J., van der Gast, C., Hahn, M.W., and Wu, Q., Do patterns of bacterial diversity along salinity gradients differ from those observed for macroorganisms? PLoS One, 2011, vol. 6, no. 11, p. e27597.
Williams, W.D., Salinity as a determinant of the structure of biological communities in salt lakes, Hydrobiologia, 1998, vol. 381, no. 1, pp. 191–201.
Wurtsbaugh, W.A. and Berry, T.S., Cascading effects of decreased salinity on the plankton chemistry, and physics of the Great Salt Lake (Utah), Can. J. Fish. Aquat. Sci., 1990, vol. 47, no. 1, pp. 100–109.
Zagorodnyaya, Yu.A., Batogova, E.A., and Shadrin, N.V., Long-term transformations of plankton in hyperhaline the Baikal’skoe Lake (Crimea) in salinity gradient, Morsk. Ekol. Zh., 2008, vol. 7, no. 4, pp. 41–50.
Zavarzin, G.A., Lektsii po prirodovedcheskoi mikrobiologii (Lectures on Nature Microbiology), Moscow: Nauka, 2004.
Zhang, R., Wu, Q., Piceno, Y.M., Desantis, T.Z., Saunders, F.M., Andersen, G.L., and Liu, W.T., Diversity of bacterioplankton in contrasting Tibetan lakes revealed by high-density microarray and clone library analysis, FEMS Microbiol. Ecol., 2013, vol. 86, no. 2, pp. 277–287.
Zheng, M., Saline Lakes and Salt Basin Deposits in China, Beijing: Science Press, 2014.