Structure and Formation Model of Ag/TiO2 and Au/TiO2 Nanoparticles Synthesized through Ultrasonic Spray Pyrolysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chaudhuri, 2011, Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev., 112, 2373, 10.1021/cr100449n
Lehmhus, 2015, Futuristic nanomaterials and composites: Part I, JOM, 67, 2844, 10.1007/s11837-015-1619-x
Mohgadam, 2014, Functional metal matrix composites-self-lubricating, self-healing, and nanocomposites—An outlook, JOM, 66, 872, 10.1007/s11837-014-0948-5
Xu, X., Zhou, S., Long, J., Wu, T., and Fan, Z. (2017). The synthesis of a core-shell photocatalyst material YF3: Ho3+@TiO2 and investigation of its photocatalytic properties. Materials, 10.
Li, 2014, Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: Recent progress and perspective, Nanoscale, 6, 3995, 10.1039/C3NR06787D
Goesmann, 2010, Nanoparticulate functional materials, Angew. Chem. Int. Ed., 49, 1362, 10.1002/anie.200903053
Srdic, 2013, Recent progress on synthesis of ceramics core/shell nanostructures, Process. Appl. Ceram., 7, 45, 10.2298/PAC1302045S
Chen, 2004, Preparation of metallodielectric composite particles with multishell structure, Langmuir, 20, 3024, 10.1021/la035326a
Chong, 2010, Recent developments in photocatalytic water treatment technology: A review, Water Res., 44, 2997, 10.1016/j.watres.2010.02.039
Liu, 2006, Hybrid gold/silica/nanocrystal-quantum-dot superstructures: Synthesis and analysis of semiconductor-metal interactions, J. Am. Chem. Soc., 128, 15362, 10.1021/ja0660296
Kwon, 2008, Photocatalytic applications of micro- and nano-TiO2 in environmental engineering, Crit. Rev. Environ. Sci. Technol., 38, 197, 10.1080/10643380701628933
Zhang, 1998, Thermodynamic analysis of phase stability of nanocrystalline titania, J. Mater. Chem., 8, 2073, 10.1039/a802619j
Mansoori, 2008, Environmental application of nanotechnology, Annu. Rev. Nano Res., 2, 1
Dobrowlska, 2015, Application of turkevich method for gold nanoparticles sythesis to fabrication of SiO2@Au and TiO2@Au core-shell nanostructures, Materials, 8, 2849, 10.3390/ma8062849
Lai, 1998, Scanning tunneling microscopy studies of metal clusters supported on TiO2 (110): Morphology and electronic structure, Prog. Surf. Sci., 59, 25, 10.1016/S0079-6816(98)00034-3
Cosandey, 2001, Growth, morphology, interfacial effects and catalytic properties of Au on TiO2, Surf. Rev. Lett., 8, 73, 10.1142/S0218625X01000884
Vittadini, 2002, Small gold clusters on stoichiometric and defected TiO2 anatase (101) and their interaction with CO: A density functional study, J. Chem. Phys., 117, 353, 10.1063/1.1481376
Koiso, M., and Palmer, B. (2009, January 15–20). Anisotropic surface energy. Proceedings of the 16th OCU International Academic Symposium 2008, Osaka City University, Osaka, Japan.
Galhenage, 2013, Understanding the nucleation and growth of metals on TiO2: Co compared to Au, Ni, and Pt, J. Phys. Chem. C, 117, 7191, 10.1021/jp401283k
Bogovic, 2016, The controlled single-step synthesis of Ag/TiO2 by ultrasonic spray pyrolysis (USP), JOM, 68, 330, 10.1007/s11837-015-1417-5
Bogovic, 2011, Controlled droplet size distribution in ultrasonic spray pyrolysis, Metall, 10, 455
Stopic, 2010, Mechanism and kinetics of nanosilver formation by ultrasonic spray pyrolysis—Progress report after a successful up-scaling, Metall, 64, 419
Majeric, 2015, Au-nanoparticle synthesis via ultrasonic spray pyrolysis with a separate evaporation zone, Mater. Tehnol., 49, 791, 10.17222/mit.2014.264
Majeric, 2015, Formation of non-toxic Au nanoparticles with bimodal size distribution by a modular redesign of ultrasonic spray pyrolysis, Nanosci. Nanotechnol. Lett., 7, 920, 10.1166/nnl.2015.2046
Bogovic, 2013, Synthesis of Au nanoparticles prepared by ultrasonic spray pyrolysis and hydrogen reduction, Mater. Technol., 47, 557
Rudolf, 2012, Cytotoxicity of gold nanoparticles prepared by ultrasonic spray pyrolysis, J. Biomater. Appl., 26, 595, 10.1177/0885328210377536
Stark, 2003, Simultaneous deposition of Au nanoparticles during flame synthesis of TiO2 and SiO2, J. Mater. Res., 18, 115, 10.1557/JMR.2003.0017
Teoh, 2013, A perspective on the flame spray synthesis of photocatalyst nanoparticles, Materials, 6, 3194, 10.3390/ma6083194
Haugen, 2011, TiO2, TiO2/Ag and TiO2/Au photocatalysts prepared by spray pyrolysis, J. Eur. Ceram. Soc., 31, 291, 10.1016/j.jeurceramsoc.2010.10.006
Liu, 1973, Compression of Ag and phase transformation of NaCl, J. Appl. Phys., 44, 1475, 10.1063/1.1662396
Okuyama, 2003, Preparation of nanoparticles via spray route, Chem. Eng. Sci., 58, 537, 10.1016/S0009-2509(02)00578-X
Tsai, 2004, Ultrasonic spray pyrolysis for nanoparticles synthesis, J. Mater. Sci., 39, 3647, 10.1023/B:JMSC.0000030718.76690.11
Jayanthi, 1993, Modeling of solid particle formation during solution aerosol thermolysis, Aerosol Sci. Technol., 19, 478, 10.1080/02786829308959653
Nomoev, 2015, Structure and mechanism of the formation of core-shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation, Beilstein J. Nanotechnol., 6, 874, 10.3762/bjnano.6.89
(2017, July 31). WebElements. Available online: https://www.webelements.com/compounds/gold/gold_chloride.html.
Deng, 2008, Synthesis of Ru-Ni core-shell nanoparticles for potential sensor applications, IEEE Sens. J., 8, 730, 10.1109/JSEN.2008.923041