Structure and Electrochemical Performance of Carbide‐Derived Carbon Nanopowders

Advanced Functional Materials - Tập 23 Số 8 - Trang 1081-1089 - 2013
Carlos R. Pérez1, Sun‐Hwa Yeon2, Julie Ségalini3, Volker Presser1, Pierre‐Louis Taberna3, Patrice Simon3, Yury Gogotsi1
1Department of Materials Science and Engineering and A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104, USA
2Distributed Power Generation and Energy Storage Group, Korea Institute of Energy Research, Daejeon, 305‐343, South Korea
3Universite Paul Sabatier, CIRIMAT UMR-CNRS 5085, 118 route de Narbonne 31062 Toulouse Cedex 9–France, Réseau National sur le Stockage Electrochimique de l'Energie, FR CNRS n 3459

Tóm tắt

AbstractMicroporous carbon materials are widely used in gas storage, sorbents, supercapacitor electrodes, water desalination, and catalyst supports. While these microporous carbons usually have a particle size in the 1–100 μm range, here the synthesis of porous carbide‐derived carbon (CDC) with particle diameters around 30 nm by extraction of titanium from nanometer‐sized titanium carbide (TiC) powder at temperatures of 200 °C and above is reported. Nanometer‐sized CDCs prepared at 200–400 °C show a disordered structure and the presence of CN sp1 bonds. Above 400 °C, the CN bond disappears with the structure transition to disordered carbon similar to that observed after synthesis from carbide micropowders. Compared to CDCs produced from micrometer‐sized TiC, nano‐CDC has a broader pore size distribution due to interparticle porosity and a large contribution from the surface layers. The material shows excellent electrochemical performance due to its easily accessible pores and a large specific surface area.

Từ khóa


Tài liệu tham khảo

10.1021/ie900412c

10.1038/nmat2297

10.1002/anie.200703934

Bansal R. C., 1988, Active Carbon

10.1002/anie.200702046

10.1002/047144409X

10.1039/c2ee03092f

10.1126/science.1132195

10.1038/nmat957

10.1002/adfm.201002094

10.1016/j.carbon.2006.04.035

10.1016/j.carbon.2009.09.043

10.1149/1.1921134

10.1016/j.micromeso.2010.02.002

Gogotsi Y. G., 1995, Ceram. Trans., 51, 243

10.1002/aenm.201100047

10.1149/1.2918304

10.1016/j.jssc.2009.04.017

10.1016/j.jpowsour.2009.02.019

10.1016/j.carbon.2008.07.010

10.1002/smll.201001898

10.1149/1.3328507

10.1016/j.elecom.2010.01.037

10.1016/j.electacta.2008.05.028

10.1039/c1ee01176f

10.1016/j.carbon.2011.03.029

10.1002/aenm.201100255

10.1007/s10008-011-1521-6

10.1021/nn901825y

10.1126/science.1184126

10.1557/JMR.2010.0195

10.1063/1.1637143

10.1016/j.carbon.2008.08.004

10.1016/j.micromeso.2005.05.047

10.1063/1.1365076

10.1103/PhysRevB.67.155306

Bouchet‐Fabre B., Diamond Relat. Mater., 17, 700, 10.1016/j.diamond.2007.12.031

10.1016/j.electacta.2003.09.043

10.1063/1.1802011

10.1021/jp970490q

10.1021/jp074464w

10.1016/j.cplett.2005.01.074

10.1039/c2jm30923h

10.1021/ja910307x

10.1016/j.jpowsour.2005.09.008

10.1021/jz201312e

10.1016/S0927-7757(01)00614-8

10.1021/la0616146

10.1016/0022-0728(93)03016-I

10.1016/j.electacta.2008.05.019