Structure, Scaling, and Performance of Natural Micro- and Nanocomposites

Springer Science and Business Media LLC - Tập 1 - Trang 53-61 - 2011
Sacheen Bekah1, Reza Rabiei1, Francois Barthelat1
1Department of Mechanical Engineering, McGill University, Montreal, Canada

Tóm tắt

Natural materials boast remarkable mechanical performances in some cases unmatched by their synthetic counterparts, and for this reason, they have become an inspiration for the development of new materials. In high-performance natural materials such as nacre, bone, or teeth, stiffness and toughness are achieved with the staggered microstructure, where stiff inclusions of high aspect ratio are embedded in a softer matrix. While the modulus and strength of the staggered structure is well understood, fracture toughness and scaling remains unclear. In this work, a fracture model based on the fundamental micromechanics of the staggered structure is presented. The model captures crack bridging and process zone toughening, and explicitly shows how these toughening processes are the most efficient with high concentrations of small tablets of high aspect ratio. In particular, a desirable non-steady cracking regime can be achieved with specific requirements for structure and interface properties, which are presented in detail. These attractive toughening mechanisms are only possible if the tablets themselves do not fracture. The benefits of small size have been explored in the past, but here, we show for the first time how the effects of a stress singularity generated by the junctions between the tablets can be alleviated by the softer interfaces, provided that a “soft wrap” condition is met. The models provide new insights into the optimization and scaling of natural and biomimetic composites.

Tài liệu tham khảo

Wegst, U. G. K., & Ashby, M. F. (2004). The mechanical efficiency of natural materials. Philosophical Magazine, 84, 2167. Bonderer, L. J., Studart, A. R., Gauckler, L. J. (2008). Bioinspired design and assembly of platelet reinforced polymer films. Science, 319, 1069. Munch, E., Launey, M. E., Alsem, D. H., Saiz, E., Tomsia, A. P., Ritchie, R. O. (2008). Tough, bio-inspired hybrid materials. Science, 322, 1516. Barthelat, F. (2007). Biomimetics for next generation materials. Philosophical Transactions of the Royal Society, 365, 2907. Espinosa, H. D., Rim, J. E., Barthelat, F., Buehler, M. J. (2009). Merger of structure and material in nacre and bone—Perspectives on de novo biomimetic materials. Progress in Materials Science, 54, 1059. Ortiz, C., & Boyce, M. C. (2008). Materials science—Bioinspired structural materials. Science, 319, 1053. Buehler, M. J., Keten, S., Ackbarow, T. (2008). Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture. Progress in Materials Science, 53, 1101. Jager, I., & Fratzl, P. (2000). Mineralized collagen fibrils: A mechanical model with a staggered arrangement of mineral particles. Biophysical Journal, 79, 1737. Kotha, S. P., Li, Y., Guzelsu, N. (2001). Micromechanical model of nacre tested in tension. Journal of Materials Science, 36, 2001. Ji, B. H., & Gao, H. J. (2004). Mechanical properties of nanostructure of biological materials. Journal of the Mechanics and Physics of Solids, 52, 1963. Gao, H. J., Ji, B. H., Jager, I. L., Arzt, E., Fratzl, P. (2003). Materials become insensitive to flaws at nanoscale: Lessons from nature. Proceedings of the National Academy of Sciences of the United States of America, 100, 5597. Barthelat, F., & Rabiei, R. (2011). Toughness amplification in natural composites. Journal of the Mechanics and Physics of Solids, 59, 829. Jackson, A. P., Vincent, J. F. V., Turner, R. M. (1988). The mechanical design of nacre. Proceedings. Royal Society of London, 234, 415. Barthelat, F., Tang, H., Zavattieri, P. D., Li, C. M., Espinosa, H. D. (2007). On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. Journal of the Mechanics and Physics of Solids, 55, 225. Gao, H. J. (2006). Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. International Journal of Fracture, 138, 101. Smith, B. L., Schaeffer, T. E., Viani, M., Thompson, J. B., Frederick, N. A., Kindt, J., et al. (1999). Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature (London), 399, 761. Evans, A. G., Suo, Z., Wang, R. Z., Aksay, I. A., He, M. Y., Hutchinson, J. W. (2001). Model for the robust mechanical behavior of nacre. Journal of Materials Research, 16, 2475. Katti, D. R., Pradhan, S. M., Katti, K. S. (2004). Modeling the organic–inorganic interfacial nanoasperities in a model bio-nanocomposite, nacre. Reviews on Advanced Materials Science, 6, 162. Song, F., & Bai, Y. L. (2003). Effects of nanostructures on the fracture strength of the interfaces in nacre. Journal of Materials Research, 18, 1741. Gupta, H. S., Seto, J., Wagermaier, W., Zaslansky, P., Boesecke, P., Fratzl, P. (2006). Cooperative deformation of mineral and collagen in bone at the nanoscale. Proceedings of the National Academy of Sciences of the United States of America, 103, 17741. Fantner, G. E., Hassenkam, T., Kindt, J. H., Weaver, J. C., Birkedal, H., Pechenik, L., et al. (2005). Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nature Materials, 4, 612. Currey, J. D. (1977). Mechanical properties of mother of pearl in tension. Proceedings. Royal Society of London, 196, 443. Ballarini, R., Kayacan, R., Ulm, F. J., Belytschko, T., Heuer, A. H. (2005). Biological structures mitigate catastrophic fracture through various strategies. International Journal of Fracture, 135, 187. Liu G, Ji B, Hwang KC, Khoo BC. (2011). Analytical solutions of the displacement and stress fields of the nanocomposite structure of biological materials. Composites Science and Technology. doi:10.1016/j.compscitech.2011.03.011. Evans, A. G., Ahmad, Z. B., Gilbert, D. G., Beaumont, P. W. R. (1986). Mechanisms of toughening in rubber toughened polymers. Acta Metallurgica, 34, 79. McMeeking, R. M., & Evans, A. G. (1982). Mechanics of transformation-toughening in brittle materials. Journal of the American Ceramic Society, 65, 242. Lawn, B. R. (1993). Fracture of brittle solids. New York: Cambridge University Press. Barthelat, F., & Espinosa, H. D. (2007). An experimental investigation of deformation and fracture of nacre-mother of pearl. Experimental Mechanics, 47, 311. Ager, J. W., Balooch, G., Ritchie, R. O. (2006). Fracture, aging, and disease in bone. Journal of Materials Research, 21, 1878. Rabiei, R., Bekah, S., Barthelat, F. (2010). Failure mode transition in nacre and bone-like materials. Acta Biomaterialia, 6, 4081. Broz, M. E., Cook, R. F., Whitney, D. L. (2006). Microhardness, toughness, and modulus of Mohs scale minerals. Am. Mineral., 91, 135. Chan, K. S., He, M. Y., Hutchinson, J. W. (1993). Cracking and stress redistribution in ceramic layered composites. Mater. Sci. Eng., A, 167, 57. Meyers, M. A., Lin, A. Y. M., Seki, Y., Chen, P. Y., Kad, B. K., Bodde, S. (2006). Structural biological composites: An overview. JOM Journal of the Minerals Metals and Materials Society, 58, 35. Deville, S., Saiz, E., Nalla, R. K., Tomsia, A. P. (2006). Freezing as a path to build complex composites. Science, 311, 515. Espinosa, H. D., Juster, A. L., Latourte, F. J., Loh, O. Y., Gregoire, D., & Zavattieri, P. D. (2011). Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nature Communications, 2, 173. Barthelat, F. (2010). Nacre from mollusk shells: A model for high-performance structural materials. Bioinspiration & Biomimetics, 5, 8. Barthelat, F., & Zhu, D. (2011). Journal of Materials Research, 26(10). Buehler, M. J., & Ackbarow, T. (2007). Fracture mechanics of protein materials. Materials Today, 10, 46. Buehler, M. J. (2010). Computational and theoretical materiomics: Properties of biological and de novo bioinspired materials. Journal of Computational and Theoretical Nanoscience, 7, 1203.