Structure, Property, and Performance of Catalyst Layers in Proton Exchange Membrane Fuel Cells
Tóm tắt
Catalyst layer (CL) is the core component of proton exchange membrane (PEM) fuel cells, which determines the performance, durability, and cost. However, difficulties remain for a thorough understanding of the CLs’ inhomogeneous structure, and its impact on the physicochemical and electrochemical properties, operating performance, and durability. The inhomogeneous structure of the CLs is formed during the manufacturing process, which is sensitive to the associated materials, composition, fabrication methods, procedures, and conditions. The state-of-the-art visualization and characterization techniques are crucial to examine the CL structure. The structure-dependent physicochemical and electrochemical properties are then thoroughly scrutinized in terms of fundamental concepts, theories, and recent progress in advanced experimental techniques. The relation between the CL structure and the associated effective properties is also examined based on experimental and theoretical findings. Recent studies indicated that the CL inhomogeneous structure also strongly affects the performance and degradation of the whole fuel cell, and thus, the interconnection between the fuel cell performance, failure modes, and CL structure is comprehensively reviewed. An analytical model is established to understand the effect of the CL structure on the effective properties, performance, and durability of the PEM fuel cells. Finally, the challenges and prospects of the CL structure-associated studies are highlighted for the development of high-performing PEM fuel cells.
Tài liệu tham khảo
U.S. Department of Energy Hydrogen and Fuel Cells Program: Record 17007: Fuel Cell System Cost-2017 (2017)
Holton, O., Stevenson, J.: The role of platinum in proton exchange membrane fuel cells. Platin. Met. Rev. 57, 259–271 (2013). https://doi.org/10.1595/147106713X671222
Zhang, J.J.: PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications. Springer, London (2008). https://doi.org/10.1007/978-1-84800-936-3
Zhao, J., Li, X.G.: Oxygen transport in polymer electrolyte membrane fuel cells based on measured electrode pore structure and mass transport properties. Energy Convers. Manag. 186, 570–585 (2019). https://doi.org/10.1016/j.enconman.2019.02.042
Li, X.G.: Principles of Fuel Cells. CRC Press, Boca Raton (2005). https://doi.org/10.1201/9780203942338
Nørskov, J.K., Rossmeisl, J., Logadottir, A., et al.: Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004). https://doi.org/10.1021/jp047349j10.1021/jp047349j
Yin, Y., Liu, J., Chang, Y.F., et al.: Design of Pt–C/Fe–N–S–C cathode dual catalyst layers for proton exchange membrane fuel cells under low humidity. Electrochim. Acta 296, 450–457 (2019). https://doi.org/10.1016/j.electacta.2018.11
Fan, J.T., Chen, M., Zhao, Z.L., et al.: Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nat. Energy 6, 475–486 (2021). https://doi.org/10.1038/s41560-021-00824-7
Neergat, M., Rahul, R.: Unsupported Cu–Pt core–shell nanoparticles: oxygen reduction reaction (ORR) catalyst with better activity and reduced precious metal content. J. Electrochem. Soc. 159, F234–F241 (2012). https://doi.org/10.1149/2.039207jes
Ding, Y., Chen, M.W., Erlebacher, J.: Metallic mesoporous nanocomposites for electrocatalysis. J. Am. Chem. Soc. 126, 6876–6877 (2004). https://doi.org/10.1021/ja0320119
Chen, Z.W., Higgins, D., Yu, A.P., et al.: A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4, 3167–3192 (2011). https://doi.org/10.1039/c0ee00558d
Higgins, D.C., Chen, Z.W.: Recent progress in non-precious metal catalysts for PEM fuel cell applications. Can. J. Chem. Eng. 91, 1881–1895 (2013). https://doi.org/10.1002/cjce.21884
Zamani, P., Higgins, D.C., Hassan, F.M., et al.: Highly active and porous graphene encapsulating carbon nanotubes as a non-precious oxygen reduction electrocatalyst for hydrogen-air fuel cells. Nano Energy 26, 267–275 (2016). https://doi.org/10.1016/j.nanoen.2016.05.035
Fu, X.G., Hassan, F.M., Zamani, P., et al.: Engineered architecture of nitrogenous graphene encapsulating porous carbon with nano-channel reactors enhancing the PEM fuel cell performance. Nano Energy 42, 249–256 (2017). https://doi.org/10.1016/j.nanoen.2017.10.051
Zhu, J.B., Xiao, M.L., Song, P., et al.: Highly polarized carbon nano-architecture as robust metal-free catalyst for oxygen reduction in polymer electrolyte membrane fuel cells. Nano Energy 49, 23–30 (2018). https://doi.org/10.1016/j.nanoen.2018.04.021
Tabe, Y., Saito, M., Fukui, K.R., et al.: Cold start characteristics and freezing mechanism dependence on start-up temperature in a polymer electrolyte membrane fuel cell. J. Power Sources 208, 366–373 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.052
Xie, J., Garzon, F., Zawodzinski, T., et al.: Ionomer segregation in composite MEAs and its effect on polymer electrolyte fuel cell performance. J. Electrochem. Soc. 151, A1084 (2004). https://doi.org/10.1149/1.1756887
Gao, Y.: Using MRT lattice Boltzmann method to simulate gas flow in simplified catalyst layer for different inlet-outlet pressure ratio. Int. J. Heat Mass Transf. 88, 122–132 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.031
Jhong, H.R., Brushett, F.R., Kenis, P.J.A.: The effects of catalyst layer deposition methodology on electrode performance. Adv. Energy Mater. 3, 589–599 (2013). https://doi.org/10.1002/aenm.201200759
Hitchcock, A.P., Johansson, G.A., Mitchell, G.E., et al.: 3-D chemical imaging using angle-scan nanotomography in a soft X-ray scanning transmission X-ray microscope. Appl. Phys. A 92, 447–452 (2008). https://doi.org/10.1007/s00339-008-4588-x
Kim, S., Mench, M.M.: Physical degradation of membrane electrode assemblies undergoing freeze/thaw cycling: micro-structure effects. J. Power Sources 179, 140–146 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.114
More, K., Borup, R., Reeves, K.: Identifying contributing degradation phenomena in PEM fuel cell membrane electride assemblies via electron microscopy. ECS Trans. 3, 717–733 (2006). https://doi.org/10.1149/1.2356192
Gode, P., Jaouen, F., Lindbergh, G., et al.: Influence of the composition on the structure and electrochemical characteristics of the PEFC cathode. Electrochim. Acta 48, 4175–4187 (2003). https://doi.org/10.1016/S0013-4686(03)00603-0
Pollet, B.G., Goh, J.T.E.: The importance of ultrasonic parameters in the preparation of fuel cell catalyst inks. Electrochim. Acta 128, 292–303 (2014). https://doi.org/10.1016/j.electacta.2013.09.160
Bonifácio, R.N., Paschoal, J.O.A., Linardi, M., et al.: Catalyst layer optimization by surface tension control during ink formulation of membrane electrode assemblies in proton exchange membrane fuel cell. J. Power Sources 196, 4680–4685 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.010
Litster, S., McLean, G.: PEM fuel cell electrodes. J. Power Sources 130, 61–76 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.055
Wolf, G.: Modification of chemical properties of materials by ion beam mixing and ion beam assisted deposition. J. Vac. Sci. Technol. A Vac. Surf. Films A10, 1757–1764 (1992). https://doi.org/10.1116/1.577743
George, S.M.: Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010). https://doi.org/10.1021/cr900056b
Niedrach, L.W., Alford, H.R.: Polytetrafluoroethylene Coated and Bonded Cell Structures. US Patent 3,432,355 (1969)
Wilson, M.S., Gottesfeld, S.: Thin-film catalyst layers for polymer electrolyte fuel cell electrodes. J. Appl. Electrochem. 22, 1–7 (1992). https://doi.org/10.1007/BF01093004
Wee, J.H., Lee, K.Y., Kim, S.H.: Fabrication methods for low-Pt-loading electrocatalysts in proton exchange membrane fuel cell systems. J. Power Sources 165, 667–677 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.051
Ticianelli, E.A., Derouin, C.R., Redondo, A., et al.: Methods to advance technology of proton exchange membrane fuel cells. J. Electrochem. Soc. 135, 2209–2214 (1988). https://doi.org/10.1149/1.2096240
Alvar, E.N., Zhou, B., Eichhorn, S.H.: Carbon-embedded mesoporous Nb-doped TiO2 nanofibers as catalyst support for the oxygen reduction reaction in PEM fuel cells. J. Mater. Chem. A 4, 6540–6552 (2016). https://doi.org/10.1039/c5ta08801a
Mukherjee, S., Bates, A., Lee, S.C., et al.: A review of the application of CNTs in PEM fuel cells. Int. J. Green Energy 12, 787–809 (2015). https://doi.org/10.1080/15435075.2013.867270
Fraser, A., Zhang, Z.S., Merle, G.E., et al.: Composite carbon nanotube microsphere coatings for use as electrode supports. Adv. Funct. Mater 28, 1803713 (2018). https://doi.org/10.1002/adfm.201803713
Ozden, A., Shahgaldi, S., Zhao, J., et al.: Degradations in porous components of a proton exchange membrane fuel cell under freeze-thaw cycles: morphology and microstructure effects. Int. J. Hydrog. Energy 45, 3618–3631 (2020). https://doi.org/10.1016/j.ijhydene.2018.10.209
Navaei Alvar, E., Zhou, B., Eichhorn, S.H.: Composite-supported Pt catalyst and electrosprayed cathode catalyst layer for polymer electrolyte membrane fuel cell. Int. J. Energy Res. 41, 1626–1641 (2017). https://doi.org/10.1002/er.3746
Raistrick, I.D.: Electrode Assembly for Use in a Solid Polymer Electrolyte Fuel Cell. US Patent 4,876,115 (1989)
Wilson, M.S.: Membrane Catalyst Layer for Fuel Cells. US Patent 5,234,777 (1993)
Wu, J.F., Yuan, X.Z., Martin, J.J., et al.: A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J. Power Sources 184, 104–119 (2008). https://doi.org/10.1016/j.jpowsour.2008.06.006
Shahgaldi, S., Zhao, J., Alaefour, I., et al.: Investigation of catalytic vs reactant transport effect of catalyst layers on proton exchange membrane fuel cell performance. Fuel 208, 321–328 (2017). https://doi.org/10.1016/j.fuel.2017.07.035
Zhao, J., Shahgaldi, S., Ozden, A., et al.: Effect of catalyst deposition on electrode structure, mass transport and performance of polymer electrolyte membrane fuel cells. Appl. Energy 255, 113802 (2019). https://doi.org/10.1016/j.apenergy.2019.113802
Hwang, D.S., Park, C.H., Yi, S.C., et al.: Optimal catalyst layer structure of polymer electrolyte membrane fuel cell. Int. J. Hydrog. Energy 36, 9876–9885 (2011). https://doi.org/10.1016/j.ijhydene.2011.05.073
Shahgaldi, S., Alaefour, I., Zhao, J., et al.: Impact of ionomer in the catalyst layers on proton exchange membrane fuel cell performance under different reactant flows and pressures. Fuel 227, 35–41 (2018). https://doi.org/10.1016/j.fuel.2018.04.076
Shahgaldi, S., Alaefour, I., Unsworth, G., et al.: Development of a low temperature decal transfer method for the fabrication of proton exchange membrane fuel cells. Int. J. Hydrog. Energy 42, 11813–11822 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.127
Strong, A., Thornberry, C., Beattie, S., et al.: Depositing catalyst layers in polymer electrolyte membrane fuel cells: a review. J. Fuel Cell Sci. Technol. 12, 064001 (2015). https://doi.org/10.1115/1.403196110.1115/1.4031961
Therdthianwong, A., Ekdharmasuit, P., Therdthianwong, S.: Fabrication and performance of membrane electrode assembly prepared by a catalyst-coated membrane method: effect of solvents used in a catalyst ink mixture. Energy Fuels 24, 1191–1196 (2010). https://doi.org/10.1021/ef901105k10.1021/ef901105k
Zhao, J.: Catalyst Layers in Polymer Electrolyte Membrane Fuel Cells: Formation, Characterization and Performance. Dissertation, University of Waterloo (2019). https://uwspace.uwaterloo.ca/handle/10012/14425
Huang, D.C., Yu, P.J., Liu, F.J., et al.: Effect of dispersion solvent in catalyst ink on proton exchange membrane fuel cell performance. Int. J. Electrochem. Sci. 6, 2551–2565 (2011)
Jeon, S., Lee, J.S., Rios, G.M., et al.: Effect of ionomer content and relative humidity on polymer electrolyte membrane fuel cell (PEMFC) performance of membrane-electrode assemblies (MEAs) prepared by decal transfer method. Int. J. Hydrog. Energy 35, 9678–9686 (2010). https://doi.org/10.1016/j.ijhydene.2010.06.044
Harris, T.A.L., Walczyk, D.F.: Development of a casting technique for membrane material used in high-temperature PEM fuel cells. J. Manuf. Process. 8, 8–20 (2006). https://doi.org/10.1016/S1526-6125(06)70097-4
Peng, X., Omasta, T., Rigdon, W., et al.: Fabrication of high performing PEMFC catalyst-coated membranes with a low cost air-assisted cylindrical liquid jets spraying system. J. Electrochem. Soc. 163, E407–E413 (2016). https://doi.org/10.1149/2.0981614jes
Zhao, J., Ozden, A., Shahgaldi, S., et al.: Effect of Pt loading and catalyst type on the pore structure of porous electrodes in polymer electrolyte membrane (PEM) fuel cells. Energy 150, 69–76 (2018). https://doi.org/10.1016/j.energy.2018.02.134
Wu, S.D., Chou, C.P., Peng, R.G., et al.: A novel scrape-applied method for the manufacture of the membrane–electrode assembly of the fuel–cell system. Acta Mech. Sin. 25, 831–837 (2009). https://doi.org/10.1007/s10409-009-0261-7
Rajalakshmi, N., Dhathathreyan, K.S.: Catalyst layer in PEMFC electrodes: fabrication, characterisation and analysis. Chem. Eng. J. 129, 31–40 (2007). https://doi.org/10.1016/j.cej.2006.10.035
Wang, W.T., Chen, S.Q., Li, J.J., et al.: Fabrication of catalyst coated membrane with screen printing method in a proton exchange membrane fuel cell. Int. J. Hydrog. Energy 40, 4649–4658 (2015). https://doi.org/10.1016/j.ijhydene.2015.02.027
Shukla, S., Domican, K., Karan, K., et al.: Analysis of low platinum loading thin polymer electrolyte fuel cell electrodes prepared by inkjet printing. Electrochim. Acta 156, 289–300 (2015). https://doi.org/10.1016/j.electacta.2015.01.028
Millington, B., Whipple, V., Pollet, B.G.: A novel method for preparing proton exchange membrane fuel cell electrodes by the ultrasonic-spray technique. J. Power Sources 196, 8500–8508 (2011). https://doi.org/10.1016/j.jpowsour.2011.06.024
Vilambi Reddy, N.R.K., Anderson, E.B., Taylor, E.J.: High Utilization Supported Catalytic Metal-Containing Gas-Diffusion Electrode, Process for Making it, and Cells Utilizing it. US Patent 5,084,144 (1992)
Chaparro, A.M., Ferreira-Aparicio, P., Folgado, M.A., et al.: Catalyst layers for proton exchange membrane fuel cells prepared by electrospray deposition on Nafion membrane. J. Power Sources 196, 4200–4208 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.096
Chaparro, A.M., Gallardo, B., Folgado, M.A., et al.: PEMFC electrode preparation by electrospray: optimization of catalyst load and ionomer content. Catal. Today 143, 237–241 (2009). https://doi.org/10.1016/j.cattod.2008.12.003
Umeda, M., Kawaguchi, S., Uchida, I.: Characterization of membrane electrode assembly for fuel cells prepared by electrostatic spray deposition. Jpn. J. Appl. Phys. 45, 6049–6054 (2006). https://doi.org/10.1143/jjap.45.6049
Wang, X.H., Richey, F.W., Wujcik, K.H., et al.: Ultra-low platinum loadings in polymer electrolyte membrane fuel cell electrodes fabricated via simultaneous electrospinning/electrospraying method. J. Power Sources 264, 42–48 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.052
Huang, J., Li, Z., Zhang, J.B.: Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: the blessing and curse of ionomer. Front. Energy 11, 334–364 (2017). https://doi.org/10.1007/s11708-017-0490-6
de las Heras, A., Vivas, F.J., Segura, F., et al.: From the cell to the stack. A chronological walk through the techniques to manufacture the PEFCs core. Renew. Sustain. Energy Rev. 96, 29–45 (2018). https://doi.org/10.1016/j.rser.2018.07.036
Gruber, D., Ponath, N., Müller, J., et al.: Sputter-deposited ultra-low catalyst loadings for PEM fuel cells. J. Power Sources 150, 67–72 (2005). https://doi.org/10.1016/j.jpowsour.2005.02.076
Caillard, A., Charles, C., Boswell, R., et al.: Improvement of the sputtered platinum utilization in proton exchange membrane fuel cells using plasma-based carbon nanofibres. J. Phys. D Appl. Phys. 41, 185307 (2008). https://doi.org/10.1088/0022-3727/41/18/185307
Saha, M.S., Gullá, A.F., Allen, R.J., et al.: High performance polymer electrolyte fuel cells with ultra-low Pt loading electrodes prepared by dual ion-beam assisted deposition. Electrochim. Acta 51, 4680–4692 (2006). https://doi.org/10.1016/j.electacta.2006.01.006
Fernandes, M.G., Thompson, D.A., Smeltzer, W.W., et al.: Electrocatalysis of Pt–Fe alloys produced by ion beam mixing. J. Mater. Res. 5, 98–108 (1990). https://doi.org/10.1557/jmr.1990.0098
Gullá, A.F., Saha, M.S., Allen, R.J., et al.: Dual ion-beam-assisted deposition as a method to obtain low loading-high performance electrodes for PEMFCs. Electrochem. Solid-State Lett. 8, A504–A508 (2005). https://doi.org/10.1149/1.2008887
Song, Z.X., Banis, M.N., Zhang, L., et al.: Origin of achieving the enhanced activity and stability of Pt electrocatalysts with strong metal-support interactions via atomic layer deposition. Nano Energy 53, 716–725 (2018). https://doi.org/10.1016/j.nanoen.2018.09.008
Cheng, N.C., Shao, Y.Y., Liu, J., et al.: Electrocatalysts by atomic layer deposition for fuel cell applications. Nano Energy 29, 220–242 (2016). https://doi.org/10.1016/j.nanoen.2016.01.016
Cheng, N.C., Liu, J., Banis, M.N., et al.: High stability and activity of Pt electrocatalyst on atomic layer deposited metal oxide/nitrogen-doped graphene hybrid support. Int. J. Hydrog. Energy 39, 15967–15974 (2014). https://doi.org/10.1016/j.ijhydene.2014.01.202
Zhang, L., Doyle-Davis, K., Sun, X.L.: Pt-Based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms. Energy Environ. Sci. 12, 492–517 (2019). https://doi.org/10.1039/c8ee02939c
Yao, D.W., Yu, H.M., Song, W., et al.: Porous Pt–Ni nanobelt arrays with superior performance in H2/air atmosphere for proton exchange membrane fuel cells. ACS Appl. Energy Mater. 4, 10703–10712 (2021). https://doi.org/10.1021/acsaem.1c01432
Ozkan, S., Valle, F., Mazare, A., et al.: Optimized polymer electrolyte membrane fuel cell electrode using TiO2 nanotube arrays with well-defined spacing. ACS Appl. Nano Mater. 3, 4157–4170 (2020). https://doi.org/10.1021/acsanm.0c00325
Murata, S., Imanishi, M., Hasegawa, S., et al.: Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells. J. Power Sources 253, 104–113 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.073
Kongkanand, A., Zhang, J.X., Liu, Z.Y., et al.: Degradation of PEMFC observed on NSTF electrodes. J. Electrochem. Soc. 161, F744–F753 (2014). https://doi.org/10.1149/2.074406jes
Kongkanand, A., Owejan, J.E., Moose, S., et al.: Development of dispersed-catalyst/NSTF hybrid electrode. J. Electrochem. Soc. 159, F676–F682 (2012). https://doi.org/10.1149/2.023211jes
Debe, M.K.: Tutorial on the fundamental characteristics and practical properties of nanostructured thin film (NSTF) catalysts. J. Electrochem. Soc. 160, F522–F534 (2013). https://doi.org/10.1149/2.049306jes
Jiao, K., Li, X.G.: Water transport in polymer electrolyte membrane fuel cells. Prog. Energy Combust. Sci. 37, 221–291 (2011). https://doi.org/10.1016/j.pecs.2010.06.002
Dobson, P., Lei, C., Navessin, T., et al.: Characterization of the PEM fuel cell catalyst layer microstructure by nonlinear least-squares parameter estimation. J. Electrochem. Soc. 159, B514–B523 (2012). https://doi.org/10.1149/2.041205jes
Yu, H.M., Schumacher, J.O., Zobel, M., et al.: Analysis of membrane electrode assembly (MEA) by environmental scanning electron microscope (ESEM). J. Power Sources 145, 216–222 (2005). https://doi.org/10.1016/j.jpowsour.2004.12.069
Inaba, M., Yamada, H., Tokunaga, J., et al.: Hydrogen peroxide formation as a degradation factor of polymer electrolyte fuel cells. ECS Trans. 1, 315–322 (2006). https://doi.org/10.1149/1.2214564
Roane, T.M., Pepper, I.L.: Microscopic techniques. In: Pepper, I.L., Gerba, C.P., Gentry, T.J. (eds.) Environmental Microbiology, pp. 177–193. Elsevier, Amsterdam (2015). https://doi.org/10.1016/B978-0-12-394626-3.00009-0
Zhao, J., Shahgaldi, S., Li, X.G., et al.: Experimental observations of microstructure changes in the catalyst layers of proton exchange membrane fuel cells under wet-dry cycles. J. Electrochem. Soc. 165, F3337–F3345 (2018). https://doi.org/10.1149/2.0391806jes
Ozden, A., Shahgaldi, S., Zhao, J., et al.: Assessment of graphene as an alternative microporous layer material for proton exchange membrane fuel cells. Fuel 215, 726–734 (2018). https://doi.org/10.1016/j.fuel.2017.11.109
Park, Y.C., Tokiwa, H., Kakinuma, K., et al.: Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells. J. Power Sources 315, 179–191 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.091
Xu, L.C., Siedlecki, C.A.: Atomic force microscopy. In: Ducheyne, P. (ed.) Comprehensive Biomaterials, pp. 23–35. Elsevier, Amsterdam (2011). https://doi.org/10.1016/b978-0-08-055294-1.00083-0
Morawietz, T., Handl, M., Oldani, C., et al.: Quantitative in situ analysis of ionomer structure in fuel cell catalytic layers. ACS Appl. Mater. Interfaces 8, 27044–27054 (2016). https://doi.org/10.1021/acsami.6b07188
Zhang, X.X., Gao, Y., Ostadi, H., et al.: Modelling water intrusion and oxygen diffusion in a reconstructed microporous layer of PEM fuel cells. Int. J. Hydrog. Energy 39, 17222–17230 (2014). https://doi.org/10.1016/j.ijhydene.2014.08.027
Sabharwal, M., Pant, L.M., Putz, A., et al.: Analysis of catalyst layer microstructures: from imaging to performance. Fuel Cells 16, 734–753 (2016). https://doi.org/10.1002/fuce.201600008
Inoue, G., Yokoyama, K., Ooyama, J., et al.: Theoretical examination of effective oxygen diffusion coefficient and electrical conductivity of polymer electrolyte fuel cell porous components. J. Power Sources 327, 610–621 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.107
Miller, B.D., Gan, J., Madden, J., et al.: Advantages and disadvantages of using a focused ion beam to prepare TEM samples from irradiated U–10Mo monolithic nuclear fuel. J. Nucl. Mater. 424, 38–42 (2012). https://doi.org/10.1016/j.jnucmat.2012.01.022
Moreno-Atanasio, R., Williams, R.A., Jia, X.D.: Combining X-ray microtomography with computer simulation for analysis of granular and porous materials. Particuology 8, 81–99 (2010). https://doi.org/10.1016/j.partic.2010.01.001
Hack, J., Heenan, T.M.M., Iacoviello, F., et al.: A structure and durability comparison of membrane electrode assembly fabrication methods: self-assembled versus hot-pressed. J. Electrochem. Soc. 165, F3045–F3052 (2018). https://doi.org/10.1149/2.0051806jes
Epting, W.K., Gelb, J., Litster, S.: Resolving the three-dimensional microstructure of polymer electrolyte fuel cell electrodes using nanometer-scale X-ray computed tomography. Adv. Funct. Mater. 22, 555–560 (2012). https://doi.org/10.1002/adfm.201101525
Wu, J., Melo, L.G.A., Zhu, X.H., et al.: 4D imaging of polymer electrolyte membrane fuel cell catalyst layers by soft X-ray spectro-tomography. J. Power Sources 381, 72–83 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.074
Anand, A., Savery, D., Hall, C.: Three-dimensional spatial and temporal temperature imaging in gel phantoms using backscattered ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 23–31 (2007). https://doi.org/10.1109/TUFFC.2007.208
Lockwood, G.R., Talman, J.R., Brunke, S.S.: Real-time 3-D ultrasound imaging using sparse synthetic aperture beamforming. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 980–988 (1998). https://doi.org/10.1109/58.710573
Takeuchi, M., Nishikage, T., Mor-Avi, V., et al.: Measurement of left ventricular mass by real-time three-dimensional echocardiography: validation against magnetic resonance and comparison with two-dimensional and M-mode measurements. J. Am. Soc. Echocardiogr. 21, 1001–1005 (2008). https://doi.org/10.1016/j.echo.2008.07.008
Zewail, A.H.: Four-dimensional electron microscopy. Science 328, 187–193 (2010). https://doi.org/10.1126/science.1166135
Campbell, S.: 4D, or not 4D: that is the question. Ultrasound Obstet. Gynecol. 19, 1–4 (2002). https://doi.org/10.1046/j.0960-7692.2002.00625.x
Saida, T., Sekizawa, O., Ishiguro, N., et al.: 4D visualization of a cathode catalyst layer in a polymer electrolyte fuel cell by 3D laminography-XAFS. Angew. Chem. Int. Ed. 51, 10311–10314 (2012). https://doi.org/10.1002/anie.201204478
Singh, Y., White, R.T., Najm, M., et al.: Tracking the evolution of mechanical degradation in fuel cell membranes using 4D in situ visualization. J. Power Sources 412, 224–237 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.049
White, R.T., Wu, A., Najm, M., et al.: 4D in situ visualization of electrode morphology changes during accelerated degradation in fuel cells by X-ray computed tomography. J. Power Sources 350, 94–102 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.058
Giesche, H.: Mercury porosimetry: a general (practical) overview. Part. Part. Syst. Charact. 23, 9–19 (2006). https://doi.org/10.1002/ppsc.200601009
Rouquerol, J., Fairbridge, C., Everett, D., et al.: Recommendations for the characterization of porous solids. Pure Appl. Chem. 66, 1739–1958 (1994). https://doi.org/10.1351/pac199466081739
Lastoskie, C., Gubbins, K.E., Quirke, N.: Pore size distribution analysis of microporous carbons: a density functional theory approach. J. Phys. Chem. 97, 4786–4796 (1993). https://doi.org/10.1021/j100120a035
Yu, Z., Carter, R.N., Zhang, J.: Measurements of pore size distribution, porosity, effective oxygen diffusivity, and tortuosity of PEM fuel cell electrodes. Fuel Cells 12, 557–565 (2012). https://doi.org/10.1002/fuce.201200017
Shukla, S., Wei, F., Mandal, M., et al.: Determination of PEFC gas diffusion layer and catalyst layer porosity utilizing Archimedes principle. J. Electrochem. Soc. 166, F1142–F1147 (2019). https://doi.org/10.1149/2.0251915jes
Yu, H.R., Roller, J.M., Mustain, W.E., et al.: Influence of the ionomer/carbon ratio for low-Pt loading catalyst layer prepared by reactive spray deposition technology. J. Power Sources 283, 84–94 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.101
Zhao, J., Shahgaldi, S., Ozden, A., et al.: Geometric pore surface area and fractal dimension of catalyzed electrodes in polymer electrolyte membrane fuel cells. Int. J. Energy Res. 43, 3011–3019 (2019). https://doi.org/10.1002/er.4260
Rootare, H.M., Prenzlow, C.F.: Surface areas from mercury porosimeter measurements. J. Phys. Chem. 71, 2733–2736 (1967). https://doi.org/10.1021/j100867a057
Dullien, F.A.L.: Porous Media: Fluid Transport and Pore Structure. Academic Press, California (1979)
Malekian, A., Salari, S., Tam, M., et al.: Compressive behaviour of thin catalyst layers. Part II - model development and validation. Int. J. Hydrog. Energy 44, 18461–18471 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.135
Li, A.D., Han, M., Chan, S.H., et al.: Effects of hydrophobicity of the cathode catalyst layer on the performance of a PEM fuel cell. Electrochim. Acta 55, 2706–2711 (2010). https://doi.org/10.1016/j.electacta.2009.12.048
Volfkovich, Y.M., Bagotzky, V.S.: The method of standard porosimetry. 1. Principles and possibilities. J. Power Sources 48, 327–338 (1994). https://doi.org/10.1016/0378-7753(94)80029-4
Yu, H.M., Ziegler, C., Oszcipok, M., et al.: Hydrophilicity and hydrophobicity study of catalyst layers in proton exchange membrane fuel cells. Electrochim. Acta 51, 1199–1207 (2006). https://doi.org/10.1016/j.electacta.2005.06.036
Volfkovich, Y.M., Bagotzky, V.S.: The method of standard porosimetry. 2. Investigation of the formation of porous structures. J. Power Sources 48, 339–348 (1994). https://doi.org/10.1016/0378-7753(94)80030-8
Morrow, N.R., Harris, C.C.: Capillary equilibrium in porous materials. Soc. Pet. Eng. J. 5, 15–24 (1965). https://doi.org/10.2118/1011-pa
Volfkovich, Y.M., Sakars, A.V., Volinsky, A.A.: Application of the standard porosimetry method for nanomaterials. Int. J. Nanotechnol. 2, 292–302 (2005). https://doi.org/10.1504/ijnt.2005.008066
Zhao, J., Shahgaldi, S., Alaefour, I., et al.: Pore structure and effective diffusion coefficient of catalyzed electrodes in polymer electrolyte membrane fuel cells. Int. J. Hydrog. Energy 43, 3776–3785 (2018). https://doi.org/10.1016/j.ijhydene.2018.01.019
Volfkovich, Y.M., Sosenkin, V.E., Bagotsky, V.S.: Structural and wetting properties of fuel cell components. J. Power Sources 195, 5429–5441 (2010). https://doi.org/10.1016/j.jpowsour.2010.03.002
Park, S., Popov, B.N.: Effect of cathode GDL characteristics on mass transport in PEM fuel cells. Fuel 88, 2068–2073 (2009). https://doi.org/10.1016/j.fuel.2009.06.020
Bonifácio, R.N., Neto, A.O., Linardi, M.: Influence of the relative volumes between catalyst and Nafion ionomer in the catalyst layer efficiency. Int. J. Hydrog. Energy 39, 14680–14689 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.004
Fairweather, J.D., Cheung, P., St-Pierre, J., et al.: A microfluidic approach for measuring capillary pressure in PEMFC gas diffusion layers. Electrochem. Commun. 9, 2340–2345 (2007). https://doi.org/10.1016/j.elecom.2007.06.042
Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938). https://doi.org/10.1021/ja01269a023
von Kraemer, S., Puchner, M., Jannasch, P., et al.: Gas diffusion electrodes and membrane electrode assemblies based on a sulfonated polysulfone for high-temperature PEMFC. J. Electrochem. Soc. 153, A2077–A2084 (2006). https://doi.org/10.1149/1.2335979
Giesche, H., Unger, K.K., Müller, U., et al.: Hysteresis in nitrogen sorption and mercury porosimetry on mesoporous model adsorbents made of aggregated monodisperse silica spheres. Colloids Surf. 37, 93–113 (1989). https://doi.org/10.1016/0166-6622(89)80109-X
Rashapov, R.R., Unno, J., Gostick, J.T.: Characterization of PEMFC gas diffusion layer porosity. J. Electrochem. Soc. 162, F603–F612 (2015). https://doi.org/10.1149/2.0921506jes
Drake, L.C.: Pore-size distribution in porous materials. Ind. Eng. Chem. 41, 780–785 (1949). https://doi.org/10.1021/ie50472a024
Abell, A.B., Willis, K.L., Lange, D.A.: Mercury intrusion porosimetry and image analysis of cement-based materials. J. Colloid Interface Sci. 211, 39–44 (1999). https://doi.org/10.1006/jcis.1998.5986
Yan, Z., Chen, C., Fan, P.X., et al.: Pore structure characterization of ten typical rocks in China. Electron. J. Geotech. Eng. 20, 479–494 (2015)
Gregg, S.J., Sing, K.S.W., Salzberg, H.W.: Adsorption surface area and porosity. J. Electrochem. Soc. 114, 279C (1967). https://doi.org/10.1149/1.2426447
Lee, Y., Jeong, J., Youn, I.J., et al.: Modified liquid displacement method for determination of pore size distribution in porous membranes. J. Membr. Sci. 130, 149–156 (1997). https://doi.org/10.1016/S0376-7388(97)00017-3
Dubinin, M.M., Plavnik, G.M.: Microporous structures of carbonaceous adsorbents. Carbon 6, 183–192 (1968). https://doi.org/10.1016/0008-6223(68)90302-3
Anovitz, L.M., Cole, D.R.: Characterization and analysis of porosity and pore structures. Rev. Mineral. Geochem. 80, 61–164 (2015). https://doi.org/10.2138/rmg.2015.80.04
Mezedur, M.M., Kaviany, M., Moore, W.: Effect of pore structure, randomness and size on effective mass diffusivity. Aiche J. 48, 15–24 (2002). https://doi.org/10.1002/aic.690480104
Yu, K., Groom, D.J., Wang, X., et al.: Degradation mechanisms of platinum nanoparticle catalysts in proton exchange membrane fuel cells: the role of particle size. Chem. Mat. 26, 5540–5548 (2014). https://doi.org/10.1021/cm501867c
Neimark, A.V., Ravikovitch, P.I.: Capillary condensation in MMS and pore structure characterization. Microporous Mesoporous Mater. 44, 697–707 (2001). https://doi.org/10.1016/S1387-1811(01)00251-7
Majlan, E.H., Rohendi, D., Daud, W.R.W., et al.: Electrode for proton exchange membrane fuel cells: a review. Renew. Sustain. Energy Rev. 89, 117–134 (2018). https://doi.org/10.1016/j.rser.2018.03.007
Bock, C., Blakely, M.A., MacDougall, B.: Characteristics of adsorbed CO and CH3OH oxidation reactions for complex Pt/Ru catalyst systems. Electrochim. Acta 50, 2401–2414 (2005). https://doi.org/10.1016/j.electacta.2004.10.057
Shao, Y.Y., Yin, G.P., Gao, Y.Z.: Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J. Power Sources 171, 558–566 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.004
Bi, W., Fuller, T.F.: Temperature effects on PEM fuel cells Pt/C catalyst degradation. J. Electrochem. Soc. 155, B215–B221 (2008). https://doi.org/10.1149/1.2819680
Kusoglu, A., Weber, A.Z.: New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 117, 987–1104 (2017). https://doi.org/10.1021/acs.chemrev.6b00159
Rahnavard, A., Rowshanzamir, S., Parnian, M.J., et al.: The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells. Energy 82, 746–757 (2015). https://doi.org/10.1016/j.energy.2015.01.086
Chung, C.G., Kim, L., Sung, Y.W., et al.: Degradation mechanism of electrocatalyst during long-term operation of PEMFC. Int. J. Hydrog. Energy 34, 8974–8981 (2009). https://doi.org/10.1016/j.ijhydene.2009.08.094
He, M.S., Liu, B.L., Chernov, A.I., et al.: Growth mechanism of single-walled carbon nanotubes on iron–copper catalyst and chirality studies by electron diffraction. Chem. Mater. 24, 1796–1801 (2012). https://doi.org/10.1021/cm300308k
Sharabi, R., Wijsboom, Y.H., Borchtchoukova, N., et al.: Methodology for the design of accelerated stress tests for non-precious metal catalysts in fuel cell cathodes. J. Power Sources 335, 56–64 (2016). https://doi.org/10.1016/j.jpowsour.2016.10.032
Coats, A.W., Redfern, J.P.: Thermogravimetric analysis. A Rev. Anal. 88, 906–924 (1963). https://doi.org/10.1039/an9638800906
Baturina, O.A., Aubuchon, S.R., Wynne, K.J.: Thermal stability in air of Pt/C catalysts and PEM fuel cell catalyst layers. Chem. Mater. 18, 1498–1504 (2006). https://doi.org/10.1021/cm052660e
Woo, Y., Oh, S.Y., Kang, Y.S., et al.: Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell. J. Membr. Sci. 220, 31–45 (2003). https://doi.org/10.1016/S0376-7388(03)00185-6
Daş, E., Alkan Gürsel, S., Işıkel Şanlı, L., et al.: Thermodynamically controlled Pt deposition over graphene nanoplatelets: effect of Pt loading on PEM fuel cell performance. Int. J. Hydrog. Energy 42, 19246–19256 (2017). https://doi.org/10.1016/j.ijhydene.2017.06.108
Huang, C.D., Seng Tan, K., Lin, J.Y., et al.: XRD and XPS analysis of the degradation of the polymer electrolyte in H2–O2 fuel cell. Chem. Phys. Lett. 371, 80–85 (2003). https://doi.org/10.1016/S0009-2614(03)00259-8
Goodenough, J.B., Hamnett, A., Kennedy, B.J., et al.: XPS investigation of platinized carbon electrodes for the direct methanol air fuel cell. Electrochim. Acta 32, 1233–1238 (1987). https://doi.org/10.1016/0013-4686(87)80041-5
Ye, L.C., Gao, Y., Zhu, S.Y., et al.: A Pt content and pore structure gradient distributed catalyst layer to improve the PEMFC performance. Int. J. Hydrog. Energy 42, 7241–7245 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.002
Ponomarev, I.I., Zhigalina, O.M., Skupov, K.M., et al.: Preparation and thermal treatment influence on Pt-decorated electrospun carbon nanofiber electrocatalysts. RSC Adv. 9, 27406–27418 (2019). https://doi.org/10.1039/C9RA05910E
Niu, Z.Q., Becknell, N., Yu, Y., et al.: Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts. Nat. Mater. 15, 1188–1194 (2016). https://doi.org/10.1038/nmat4724
Zamel, N., Li, X.G.: Effect of contaminants on polymer electrolyte membrane fuel cells. Prog. Energy Combust. Sci. 37, 292–329 (2011). https://doi.org/10.1016/j.pecs.2010.06.003
Zhao, J., Shahgaldi, S., Alaefour, I., et al.: Gas permeability of catalyzed electrodes in polymer electrolyte membrane fuel cells. Appl. Energy 209, 203–210 (2018). https://doi.org/10.1016/j.apenergy.2017.10.087
Chapman, S., Cowling, T.G., Park, D.: The mathematical theory of non-uniform gases. Am. J. Phys. 30, 389 (1962). https://doi.org/10.1119/1.1942035
Crank, J.: The Mathematics of Diffusion. Oxford University Press, New York (1979)
Cussler, E.L.: Multicomponent Diffusion. Elsevier, Amsterdam (1976)
Wu, H., Li, X.G., Berg, P.: Numerical analysis of dynamic processes in fully humidified PEM fuel cells. Int. J. Hydrog. Energy 32, 2022–2031 (2007). https://doi.org/10.1016/j.ijhydene.2006.09.046
Kim, Y., Gostick, J.T.: Measuring effective diffusivity in porous media with a gasket-free, radial arrangement. Int. J. Heat Mass Transf. 129, 1023–1030 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.054
Mangal, P., Pant, L.M., Carrigy, N., et al.: Experimental study of mass transport in PEMFCs: through plane permeability and molecular diffusivity in GDLs. Electrochim. Acta 167, 160–171 (2015). https://doi.org/10.1016/j.electacta.2015.03.100
Shen, J., Zhou, J.Q., Astrath, N.G.C., et al.: Measurement of effective gas diffusion coefficients of catalyst layers of PEM fuel cells with a Loschmidt diffusion cell. J. Power Sources 196, 674–678 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.086
Pant, L.M., Mitra, S.K., Secanell, M.: Absolute permeability and Knudsen diffusivity measurements in PEMFC gas diffusion layers and micro porous layers. J. Power Sources 206, 153–160 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.099
Xue, Q., Zhang, R.F., Yang, D.J., et al.: Effect of ionomer content on cathode catalyst layer for PEMFC via molecular dynamics simulations and experiments. Int. J. Hydrog. Energy 47, 23335–23347 (2022). https://doi.org/10.1016/j.ijhydene.2022.05.122
Choo, M.J., Oh, K.H., Park, J.K., et al.: Analysis of oxygen transport in cathode catalyst layer of low-Pt-loaded fuel cells. ChemElectroChem 2, 382–388 (2015). https://doi.org/10.1002/celc.201402354
Nonoyama, N., Okazaki, S., Weber, A.Z., et al.: Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells. J. Electrochem. Soc. 158, B416 (2011). https://doi.org/10.1149/1.3546038
Andisheh-Tadbir, M., El Hannach, M., Kjeang, E., et al.: An analytical relationship for calculating the effective diffusivity of micro-porous layers. Int. J. Hydrog. Energy 40, 10242–10250 (2015). https://doi.org/10.1016/j.ijhydene.2015.06.067
Satterfield, C.N., Sherwood, T.K.: The Role of Diffusion in Catalysis. Addison-Wesley, Massachusetts (1963)
Dong, L.: Accuracy Improvement for Measurement of Gas Diffusivity Through Thin Porous Media. Dissertation, University of Waterloo (2012). https://uwspace.uwaterloo.ca/handle/10012/6967
Bruggeman, D.A.G.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischkörper aus isotropen Substanzen. Ann. Phys. 421, 160–178 (1937). https://doi.org/10.1002/andp.19374210205
Zamel, N., Li, X.G., Shen, J.: Correlation for the effective gas diffusion coefficient in carbon paper diffusion media. Energy Fuels 23, 6070–6078 (2009). https://doi.org/10.1021/ef900653x
Neale, G.H., Nader, W.K.: Prediction of transport processes within porous media: diffusive flow processes within an homogeneous swarm of spherical particles. AIChE J. 19, 112–119 (1973). https://doi.org/10.1002/aic.690190116
Tomadakis, M.M., Sotirchos, S.V.: Ordinary and transition regime diffusion in random fiber structures. Aiche J. 39, 397–412 (1993). https://doi.org/10.1002/aic.690390304
Das, P.K., Li, X.G., Liu, Z.S.: Effective transport coefficients in PEM fuel cell catalyst and gas diffusion layers: beyond Bruggeman approximation. Appl. Energy 87, 2785–2796 (2010). https://doi.org/10.1016/j.apenergy.2009.05.006
Mitani, M.: Geometric factor for diffusion in porous media. J. Chem. Eng. Jpn. 17, 441–443 (1984). https://doi.org/10.1252/jcej.17.441
Zamel, N., Li, X.G.: Effective transport properties for polymer electrolyte membrane fuel cells: with a focus on the gas diffusion layer. Prog. Energy Combust. Sci. 39, 111–146 (2013). https://doi.org/10.1016/j.pecs.2012.07.002
Hussaini, I.S., Wang, C.Y.: Measurement of relative permeability of fuel cell diffusion media. J. Power Sources 195, 3830–3840 (2010). https://doi.org/10.1016/j.jpowsour.2009.12.105
Taira, H., Liu, H.T.: In-situ measurements of GDL effective permeability and under-land cross-flow in a PEM fuel cell. Int. J. Hydrog. Energy 37, 13725–13730 (2012). https://doi.org/10.1016/j.ijhydene.2012.03.030
Ismail, M.S., Damjanovic, T., Hughes, K., et al.: Through-plane permeability for untreated and PTFE-treated gas diffusion layers in proton exchange membrane fuel cells. J. Fuel Cell Sci. Technol. 7, 051016 (2010). https://doi.org/10.1115/1.4000685
Tomadakis, M.M., Robertson, T.J.: Viscous permeability of random fiber structures: comparison of electrical and diffusional estimates with experimental and analytical results. J. Compos. Mater. 39, 163–188 (2005). https://doi.org/10.1177/0021998305046438
Ismail, M.S., Hughes, K.J., Ingham, D.B., et al.: Effects of anisotropic permeability and electrical conductivity of gas diffusion layers on the performance of proton exchange membrane fuel cells. Appl. Energy 95, 50–63 (2012). https://doi.org/10.1016/j.apenergy.2012.02.003
Springer, D.S., Loaiciga, H.A., Cullen, S.J., et al.: Air permeability of porous materials under controlled laboratory conditions. Groundwater 36, 558–565 (1998). https://doi.org/10.1111/j.1745-6584.1998.tb02829.x
Klinkenberg, L.J., Shell, D.C.: The permeability of porous media to liquids and gases. Drill. Prod. Pract. (2012). https://doi.org/10.5510/ogp20120200114
Chen, Y.P., Shen, C.Q., Lu, P.F., et al.: Role of pore structure on liquid flow behaviors in porous media characterized by fractal geometry. Chem. Eng. Process. Process. Intensif. 87, 75–80 (2015). https://doi.org/10.1016/j.cep.2014.11.014
Yuan, W., Tang, Y., Yang, X.J., et al.: Porous metal materials for polymer electrolyte membrane fuel cells: a review. Appl. Energy 94, 309–329 (2012). https://doi.org/10.1016/j.apenergy.2012.01.073
Gostick, J.T., Fowler, M.W., Pritzker, M.D., et al.: In-plane and through-plane gas permeability of carbon fiber electrode backing layers. J. Power Sources 162, 228–238 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.096
Feser, J.P., Prasad, A.K., Advani, S.G.: Experimental characterization of in-plane permeability of gas diffusion layers. J. Power Sources 162, 1226–1231 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.058
Kim, G.S., Sui, P.C., Shah, A.A., et al.: Reduced-dimensional models for straight-channel proton exchange membrane fuel cells. J. Power Sources 195, 3240–3249 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.110
Li, Y.B., Zhou, Z.F., Liu, X.L., et al.: Modeling of PEM fuel cell with thin MEA under low humidity operating condition. Appl. Energy 242, 1513–1527 (2019). https://doi.org/10.1016/j.apenergy.2019.03.189
Vasile, N.S., Monteverde Videla, A.H.A., Specchia, S.: Effects of the current density distribution on a single-cell DMFC by tuning the anode catalyst in layers of gradual loadings: modelling and experimental approach. Chem. Eng. J. 322, 722–741 (2017). https://doi.org/10.1016/j.cej.2017.04.060
Zhang, G.B., Fan, L.H., Sun, J., et al.: A 3D model of PEMFC considering detailed multiphase flow and anisotropic transport properties. Int. J. Heat Mass Transf. 115, 714–724 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.102
Raj, A., Shamim, T.: Investigation of the effect of multidimensionality in PEM fuel cells. Energy Convers. Manag. 86, 443–452 (2014). https://doi.org/10.1016/j.enconman.2014.04.088
Tomadakis, M.M., Sotirchos, S.V.: Effective Kundsen diffusivities in structures of randomly overlapping fibers. Aiche J. 37, 74–86 (1991). https://doi.org/10.1002/aic.690370107
Tomadakis, M.M., Sotirchos, S.V.: Knudsen diffusivities and properties of structures of unidirectional fibers. Aiche J. 37, 1175–1186 (1991). https://doi.org/10.1002/aic.690370807
Bird, R.B.: Transport phenomena. Appl. Mech. Rev. 55, R1–R4 (2002). https://doi.org/10.1115/1.1424298
Rumpf, H.C.H., Gupte, A.R.: Einflüsse der porosität und korngrößenverteilung im widerstandsgesetz der porenströmung. Chem. Ing. Techn. 43, 367–375 (1971). https://doi.org/10.1002/cite.330430610
Zamora, H., Cañizares, P., Rodrigo, M.A., et al.: Improving of micro porous layer based on advanced carbon materials for high temperature proton exchange membrane fuel cell electrodes. Fuel Cells 15, 375–383 (2015). https://doi.org/10.1002/fuce.201400139
Honarpour, M.M.: Relative Permeability of Petroleum Reservoirs. CRC Press, Boca Raton (2017). https://doi.org/10.1201/9781351076326
Ye, Q., Nguyen, T.V.: Three-dimensional simulation of liquid water distribution in a PEMFC with experimentally measured capillary functions. J. Electrochem. Soc. 154, B1242 (2007). https://doi.org/10.1149/1.2783775
Gostick, J.T., Fowler, M.W., Ioannidis, M.A., et al.: Capillary pressure and hydrophilic porosity in gas diffusion layers for polymer electrolyte fuel cells. J. Power Sources 156, 375–387 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.086
Leverett, M.C.: Capillary behavior in porous solids. Trans. AIME 142, 152–169 (1941). https://doi.org/10.2118/941152-g
Wang, Y., Chen, K.S., Mishler, J., et al.: A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88, 981–1007 (2011). https://doi.org/10.1016/j.apenergy.2010.09.030
Kumbur, E.C., Sharp, K.V., Mench, M.M.: Validated leverett approach for multiphase flow in PEFC diffusion media. J. Electrochem. Soc. 154, B1315 (2007). https://doi.org/10.1149/1.2784286
Park, J.: Serial Compression Effects on Porosity, Diffusion, Permeability, and Water Droplet Contact Angle of the Gas Diffusion Layer in Polymer Electrolyte Membrane Fuel Cells. Dissertation, University of Waterloo (2020).
Ma, L., Liu, Z.S., Huang, C., et al.: Microstructure changes induced by capillary condensation in catalyst layers of PEM fuel cells. Int. J. Hydrog. Energy 35, 12182–12190 (2010). https://doi.org/10.1016/j.ijhydene.2010.08.072
Wood, D.L., Rulison, C., Borup, R.L.: Surface properties of PEMFC gas diffusion layers. J. Electrochem. Soc. 157, B195–B206 (2010). https://doi.org/10.1149/1.3261850
Arvay, A., Yli-Rantala, E., Liu, C.H., et al.: Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells: a review. J. Power Sources 213, 317–337 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.026
Bazylak, A.: Liquid water visualization in PEM fuel cells: a review. Int. J. Hydrog. Energy 34, 3845–3857 (2009). https://doi.org/10.1016/j.ijhydene.2009.02.084
Abbou, S., Tajiri, K., Alofari, K.T., et al.: Capillary penetration method for measuring wetting properties of carbon ionomer films for proton exchange membrane fuel cell (PEMFC) applications. J. Electrochem. Soc. 166, F3227–F3233 (2019). https://doi.org/10.1149/2.0271907jes
Wang, M., Chen, M., Yang, Z.Y., et al.: High-performance and durable cathode catalyst layer with hydrophobic C@PTFE particles for low-Pt loading membrane assembly electrode of PEMFC. Energy Convers. Manag. 191, 132–140 (2019). https://doi.org/10.1016/j.enconman.2019.04.014
Liu, G.C., Ye, F., Xiong, L.Y., et al.: Cathode catalyst layer with nanofiber microstructure for direct methanol fuel cells. Energy Convers. Manag. 218, 113013 (2020). https://doi.org/10.1016/j.enconman.2020.113013
Fang, S.Y., Teoh, L.G., Huang, R.H., et al.: Effect of adding zinc oxide particles to the anode catalyst layer on the performance of a proton-exchange membrane fuel cell. J. Electron. Mater. 43, 3601–3610 (2014). https://doi.org/10.1007/s11664-014-3246-7
Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936). https://doi.org/10.1021/ie50320a024
Cassie, A.B.D., Baxter, S.: Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944). https://doi.org/10.1039/tf9444000546
Bock, R., Karoliussen, H., Pollet, B.G., et al.: The influence of graphitization on the thermal conductivity of catalyst layers and temperature gradients in proton exchange membrane fuel cells. Int. J. Hydrog. Energy 45, 1335–1342 (2020). https://doi.org/10.1016/j.ijhydene.2018.10.221
Khandelwal, M., Mench, M.M.: Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials. J. Power Sources 161, 1106–1115 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.092
Ahadi, M., Tam, M., Saha, M.S., et al.: Thermal conductivity of catalyst layer of polymer electrolyte membrane fuel cells. Part 1. Experimental study. J. Power Sources 354, 207–214 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.016
Burheim, O.S., Su, H.N., Hauge, H.H., et al.: Study of thermal conductivity of PEM fuel cell catalyst layers. Int. J. Hydrog. Energy 39, 9397–9408 (2014). https://doi.org/10.1016/j.ijhydene.2014.03.206
Astrath, N.G.C., Astrath, F.B.G., Shen, J., et al.: An open-photoacoustic-cell method for thermal characterization of a two-layer system. J. Appl. Phys. 107, 043514 (2010). https://doi.org/10.1063/1.3310319
Rowe, A., Li, X.G.: Mathematical modeling of proton exchange membrane fuel cells. J. Power Sources 102, 82–96 (2001). https://doi.org/10.1016/S0378-7753(01)00798-4
Wu, H., Li, X.G., Berg, P.: On the modeling of water transport in polymer electrolyte membrane fuel cells. Electrochim. Acta 54, 6913–6927 (2009). https://doi.org/10.1016/j.electacta.2009.06.070
Weber, A.Z., Newman, J.: Modeling transport in polymer-electrolyte fuel cells. Chem. Rev. 104, 4679–4726 (2004). https://doi.org/10.1021/cr020729l
Pant, L.M., Gerhardt, M.R., Macauley, N., et al.: Along-the-channel modeling and analysis of PEFCs at low stoichiometry: development of a 1+2D model. Electrochim. Acta 326, 134963 (2019). https://doi.org/10.1016/j.electacta.2019.134963
Gurau, V., Liu, H.T., Kakaç, S.: Two-dimensional model for proton exchange membrane fuel cells. Aiche J. 44, 2410–2422 (1998). https://doi.org/10.1002/aic.690441109
Barbir, F.: Fuel cell electrochemistry. In: Barbir, F. (ed.) PEM Fuel Cells: Theory and Practice, pp. 33–72. Elsevier, Amsterdam (2005). https://doi.org/10.1016/b978-012078142-3/50004-5
Wilberforce, T., El-Hassan, Z., Khatib, F.N., et al.: Modelling and simulation of proton exchange membrane fuel cell with serpentine bipolar plate using MATLAB. Int. J. Hydrog. Energy 42, 25639–25662 (2017). https://doi.org/10.1016/j.ijhydene.2017.06.091
Guidelli, R., Compton, R.G., Feliu, J.M., et al.: Definition of the transfer coefficient in electrochemistry (IUPAC recommendations 2014). Pure Appl. Chem. 86, 259–262 (2014). https://doi.org/10.1515/pac-2014-5025
Springer, T.E., Zawodzinski, T.A., Gottesfeld, S.: Polymer electrolyte fuel cell model. J. Electrochem. Soc. 138, 2334–2342 (1991). https://doi.org/10.1149/1.2085971
Um, S., Wang, C.Y., Chen, K.S.: Computational fluid dynamics modeling of proton exchange membrane fuel cells. J. Electrochem. Soc. 147, 4485–4493 (2000). https://doi.org/10.1149/1.1394090
Li, G.C., Pickup, P.G.: Ionic conductivity of PEMFC electrodes. J. Electrochem. Soc. 150, C745–C752 (2003). https://doi.org/10.1149/1.1611493
Haghayegh, M., Eikani, M.H., Rowshanzamir, S.: Modeling and simulation of a proton exchange membrane fuel cell using computational fluid dynamics. Int. J. Hydrog. Energy 42, 21944–21954 (2017). https://doi.org/10.1016/j.ijhydene.2017.07.098
Goshtasbi, A., Pence, B.L., Ersal, T.: A real-time pseudo-2D bi-domain model of PEM fuel cells for automotive applications. In: ASME 2017 dynamic systems and control conference, Tysons, Virginia (2017). Doi:https://doi.org/10.1115/DSCC2017-5053
Jiang, Y., Yang, Z.R., Jiao, K., et al.: Sensitivity analysis of uncertain parameters based on an improved proton exchange membrane fuel cell analytical model. Energy Convers. Manag. 164, 639–654 (2018). https://doi.org/10.1016/j.enconman.2018.03.002
Parsons, R.: Electrode reaction orders, transfer coefficients and rate constants: amplification of definitions and recommendations for publication of parameters. Electrochim. Acta 26, 1869–1874 (1981). https://doi.org/10.1016/0013-4686(81)85177-8
Kulikovsky, A.A., Divisek, J., Kornyshev, A.A.: Modeling the cathode compartment of polymer electrolyte fuel cells: dead and active reaction zones. J. Electrochem. Soc. 146, 3981–3991 (1999). https://doi.org/10.1149/1.1392580
Le, A.D., Zhou, B.: A general model of proton exchange membrane fuel cell. J. Power Sources 182, 197–222 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.047
Garrick, T.R., Moylan, T., Carpenter, M., et al.: Electrochemically active surface area measurement of aged Pt alloy catalysts in PEM fuel cells by CO stripping. J. Electrochem. Soc. 164, F55–F59 (2017). https://doi.org/10.1149/2.0381702jes
Kneer, A., Jankovic, J., Susac, D., et al.: Correlation of changes in electrochemical and structural parameters due to voltage cycling induced degradation in PEM fuel cells. J. Electrochem. Soc. 165, F3241–F3250 (2018). https://doi.org/10.1149/2.0271806jes
Migliardini, F., Corbo, P.: CV and EIS study of hydrogen fuel cell durability in automotive applications. Int. J. Electrochem. Sci. 8, 11033–11047 (2013)
Savinell, R.F., Zeller, R.L., Adams, J.A.: Electrochemically active surface area: voltammetric charge correlations for ruthenium and iridium dioxide electrodes. J. Electrochem. Soc. 137, 489–494 (1990). https://doi.org/10.1149/1.2086468
Elgrishi, N., Rountree, K.J., McCarthy, B.D., et al.: A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018). https://doi.org/10.1021/acs.jchemed.7b00361
Mayrhofer, K.J.J., Strmcnik, D., Blizanac, B.B., et al.: Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta 53, 3181–3188 (2008). https://doi.org/10.1016/j.electacta.2007.11.057
Park, Y.C., Kakinuma, K., Uchida, M., et al.: Deleterious effects of interim cyclic voltammetry on Pt/carbon black catalyst degradation during start-up/shutdown cycling evaluation. Electrochim. Acta 123, 84–92 (2014). https://doi.org/10.1016/j.electacta.2013.12.120
Koponen, U., Kumpulainen, H., Bergelin, M., et al.: Characterization of Pt-based catalyst materials by voltammetric techniques. J. Power Sources 118, 325–333 (2003). https://doi.org/10.1016/S0378-7753(03)00079-X
Iden, H., Ohma, A.: An in situ technique for analyzing ionomer coverage in catalyst layers. J. Electroanal. Chem. 693, 34–41 (2013). https://doi.org/10.1016/j.jelechem.2013.01.026
Reid, O., Saleh, F.S., Easton, E.B.: Determining electrochemically active surface area in PEM fuel cell electrodes with electrochemical impedance spectroscopy and its application to catalyst durability. Electrochim. Acta 114, 278–284 (2013). https://doi.org/10.1016/j.electacta.2013.10.050
Badduri, S.R., Srinivasulu, G.N., Rao, S.S.: Experimental analysis of PEM fuel cell performance using lung channel design bipolar plate. Int. J. Green Energy 16, 1591–1601 (2019). https://doi.org/10.1080/15435075.2019.1677238
Ismail, M.S., Damjanovic, T., Ingham, D.B., et al.: Effect of polytetrafluoroethylene-treatment and microporous layer-coating on the electrical conductivity of gas diffusion layers used in proton exchange membrane fuel cells. J. Power Sources 195, 2700–2708 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.069
Tranter, T.G., Tam, M., Gostick, J.T.: The effect of cracks on the in-plane electrical conductivity of PEFC catalyst layers. Electroanalysis 31, 619–623 (2019). https://doi.org/10.1002/elan.201800553
Pauw, I.J.V.D.: A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep.174–182 (1991). https://aki.issp.u-tokyo.ac.jp/okano/WalWiki/etc/VDP_PRR_13_1.pdf
Sadeghifar, H.: In-plane and through-plane electrical conductivities and contact resistances of a Mercedes-Benz catalyst-coated membrane, gas diffusion and micro-porous layers and a Ballard graphite bipolar plate: impact of humidity, compressive load and polytetrafluoroethylene. Energy Convers. Manag. 154, 191–202 (2017). https://doi.org/10.1016/j.enconman.2017.10.060
Suzuki, T., Murata, H., Hatanaka, T., et al.: Analysis of the catalyst layer of polymer electrolyte fuel cells. R&D Rev. Toyota CRDL 39, 33–38 (2003)
Li, C.H., Liu, J.H., Guan, R., et al.: Effect of heating and stretching membrane on ionic conductivity of sulfonated poly(phenylene oxide). J. Membr. Sci. 287, 180–186 (2007). https://doi.org/10.1016/j.memsci.2006.10.015
Kuwertz, R., Kirstein, C., Turek, T., et al.: Influence of acid pretreatment on ionic conductivity of Nafion® membranes. J. Membr. Sci. 500, 225–235 (2016). https://doi.org/10.1016/j.memsci.2015.11.022
Zhai, Y.F., Ge, J.J., St-Pierre, J.: The ionic conductivity and catalyst activity effects of acetonitrile on proton exchange membrane fuel cells. Electrochem. Commun. 66, 49–52 (2016). https://doi.org/10.1016/j.elecom.2016.02.024
Lee, C.H., Park, H.B., Lee, Y.M., et al.: Importance of proton conductivity measurement in polymer electrolyte membrane for fuel cell application. Ind. Eng. Chem. Res. 44, 7617–7626 (2005). https://doi.org/10.1021/ie0501172
Yuan, X.Z., Song, C.J., Wang, H.J., et al.: Electrochemical Impedance Spectroscopy in PEM Fuel Cells. Springer, London (2010). https://doi.org/10.1007/978-1-84882-846-9
Yuan, X.Z., Wang, H.J., Colin Sun, J., et al.: AC impedance technique in PEM fuel cell diagnosis: a review. Int. J. Hydrog. Energy 32, 4365–4380 (2007). https://doi.org/10.1016/j.ijhydene.2007.05.036
Qi, Y.Z., Liu, J.J., Sabarirajan, D.C., et al.: Interpreting ionic conductivity for polymer electrolyte fuel cell catalyst layers with electrochemical impedance spectroscopy and transmission line modeling. J. Electrochem. Soc. 168, 054502 (2021). https://doi.org/10.1149/1945-7111/abf96d
Boyer, C., Gamburzev, S., Velev, O., et al.: Measurements of proton conductivity in the active layer of PEM fuel cell gas diffusion electrodes. Electrochim. Acta 43, 3703–3709 (1998). https://doi.org/10.1016/S0013-4686(98)00128-5
Sone, Y., Ekdunge, P., Simonsson, D.: Proton conductivity of Nafion 117 as measured by a four-electrode AC impedance method. J. Electrochem. Soc. 143, 1254–1259 (1996). https://doi.org/10.1149/1.1836625
Weber, A.Z., Borup, R.L., Darling, R.M., et al.: A critical review of modeling transport phenomena in polymer-electrolyte fuel cells. J. Electrochem. Soc. 161, F1254–F1299 (2014). https://doi.org/10.1149/2.0751412jes
Mittal, V.O., Kunz, H.R., Fenton, J.M.: Membrane degradation mechanisms in PEMFCs. J. Electrochem. Soc. 154, B652–B656 (2007). https://doi.org/10.1149/1.2734869
Mond, L., Langer, C.: A new form of gas battery. Proc. R. Soc. London 46, 296–304 (1889). https://doi.org/10.1098/rspl.1889.0036
Chong, L., Wen, J., Kubal, J., et al.: Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 362, 1276–1281 (2018). https://doi.org/10.1126/science.aau0630
Wang, C., Zhao, Q., Zhou, X.W., et al.: Degradation characteristics of membrane electrode assembly under drive cycle test protocol. Int. J. Green Energy 16, 789–795 (2019). https://doi.org/10.1080/15435075.2019.1641712
Hansen, T.W., Delariva, A.T., Challa, S.R., et al.: Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Acc. Chem. Res. 46, 1720–1730 (2013). https://doi.org/10.1021/ar3002427
Mayrhofer, K.J.J., Meier, J.C., Ashton, S.J., et al.: Fuel cell catalyst degradation on the nanoscale. Electrochem. Commun. 10, 1144–1147 (2008). https://doi.org/10.1016/j.elecom.2008.05.032
Pizzutilo, E., Geiger, S., Grote, J.P., et al.: On the need of improved accelerated degradation protocols (ADPs): examination of platinum dissolution and carbon corrosion in half-cell tests. J. Electrochem. Soc. 163, F1510–F1514 (2016). https://doi.org/10.1149/2.0731614jes
Ye, S.Y., Hall, M., Cao, H., et al.: Degradation resistant cathodes in polymer electrolyte membrane fuel cells. ECS Trans. 3, 657–666 (2006). https://doi.org/10.1149/1.2356186
Li, Y.B., Moriyama, K., Gu, W.B., et al.: A one-dimensional Pt degradation model for polymer electrolyte fuel cells. J. Electrochem. Soc. 162, F834–F842 (2015). https://doi.org/10.1149/2.0101508jes
Ren, P., Pei, P.C., Li, Y.H., et al.: Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions. Prog. Energy Combust. Sci. 80, 100859 (2020). https://doi.org/10.1016/j.pecs.2020.100859
de Bruijn, F.A., Dam, V.A.T., Janssen, G.J.M.: Review: durability and degradation issues of PEM fuel cell components. Fuel Cells 8, 3–22 (2008). https://doi.org/10.1002/fuce.200700053
Macauley, N., Wong, K.H., Watson, M., et al.: Favorable effect of in situ generated platinum in the membrane on fuel cell membrane durability. J. Power Sources 299, 139–148 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.096
MacAuley, N., Papadias, D.D., Fairweather, J., et al.: Carbon corrosion in PEM fuel cells and the development of accelerated stress tests. J. Electrochem. Soc. 165, F3148–F3160 (2018). https://doi.org/10.1149/2.0061806jes
Castanheira, L., Silva, W.O., Lima, F.H.B., et al.: Carbon corrosion in proton-exchange membrane fuel cells: effect of the carbon structure, the degradation protocol, and the gas atmosphere. ACS Catal. 5, 2184–2194 (2015). https://doi.org/10.1021/cs501973j
Healy, J., Hayden, C., Xie, T., et al.: Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells. Fuel Cells 5, 302–308 (2005). https://doi.org/10.1002/fuce.200400050
Zhao, J., Li, X.G.: A review of polymer electrolyte membrane fuel cell durability for vehicular applications: degradation modes and experimental techniques. Energy Convers. Manag. 199, 112022 (2019). https://doi.org/10.1016/j.enconman.2019.112022
Novotny, P., Tomas, M., Nemec, T., et al.: On/off cycling test of low-temperature PEM fuel cell at fully humidified conditions. Int. J. Green Energy 16, 1189–1195 (2019). https://doi.org/10.1080/15435075.2019.1671394
Kim, S., Mench, M.M.: Physical degradation of membrane electrode assemblies undergoing freeze/thaw cycling: micro-structure effects. J. Power Sources 174, 206–220 (2007). https://doi.org/10.1016/j.jpowsour.2007.08.111
Sobolyeva, T.: On the Microstructure of PEM Fuel Cell Catalyst Layers. Dissertation, Simon Fraser University (2010). https://summit.sfu.ca/item/11450
Liu, Y.W., Wu, S.Y., Qin, Y.Z., et al.: Mass transport and performance of proton exchange membrane fuel cell considering the influence of porosity distribution of gas diffusion layer. Int. J. Green Energy (2021). https://doi.org/10.1080/15435075.2021.2007389
Khan, S.S., Shareef, H., Mutlag, A.H.: Dynamic temperature model for proton exchange membrane fuel cell using online variations in load current and ambient temperature. Int. J. Green Energy 16, 361–370 (2019). https://doi.org/10.1080/15435075.2018.1564141
Rong, F., Huang, C., Liu, Z.S., et al.: Microstructure changes in the catalyst layers of PEM fuel cells induced by load cycling. Part I. Mechanical model. J. Power Sources 175, 699–711 (2008). https://doi.org/10.1016/j.jpowsour.2007.10.006
Rong, F., Huang, C., Liu, Z.S., et al.: Microstructure changes in the catalyst layers of PEM fuel cells induced by load cycling. Part II. Simulation and understanding. J. Power Sources 175, 712–723 (2008). https://doi.org/10.1016/j.jpowsour.2007.10.007
Pan, M.Z., Meng, X.P., Li, C., et al.: Impact of nonuniform reactant flow rate on the performance of proton exchange membrane fuel cell stacks. Int. J. Green Energy 17, 603–616 (2020). https://doi.org/10.1080/15435075.2020.1761812