Structure-Guided Molecular Engineering of a Vascular Endothelial Growth Factor Antagonist to Treat Retinal Diseases

Springer Science and Business Media LLC - Tập 13 Số 5 - Trang 405-418 - 2020
Rakeeb Kureshi1, Angela Y. Zhu2, Jikui Shen3, Stephany Y. Tzeng1, Leilani R. Astrab1, Paul R. Sargunas2, Jordan J. Green2, Peter A. Campochiaro3, Jamie B. Spangler2
1Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
2Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
3Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Avery, R. L., et al. Systemic pharmacokinetics and pharmacodynamics of intravitreal aflibercept, bevacizumab, and ranibizumab. Retina 37:1847–1858, 2017.

Boder, E. T., and K. D. Wittrup. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15:553–557, 1997.

Boyer, D. S., J. S. Heier, D. M. Brown, S. F. Francom, T. Ianchulev, and R. G. Rubio. A phase IIIb study to evaluate the safety of ranibizumab in subjects with neovascular age-related macular degeneration. Ophthalmology 116:1731–1739, 2009.

Brown, D. M., et al. Ranibizumab vs. verteporfin for neovascular age-related macular degeneration. N. Engl. J. Med. 355:1432–1444, 2006.

Brozzo, M. S., et al. Thermodynamic and structural description of allosterically regulated VEGFR-2 dimerization. Blood 119:1781–1788, 2012.

Campochiaro, P. A. Ocular neovascularization. J. Mol. Med. 91:311–321, 2013.

Campochiaro, P. A., et al. Lentiviral vector gene transfer of endostatin/angiostatin for macular degeneration (GEM) study. Hum. Gene Ther. 28:99–111, 2017.

CATT Research Group. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 364:1897–1908, 2011.

Chao, G., W. L. Lau, B. J. Hackel, S. L. Sazinsky, S. M. Lippow, and K. D. Wittrup. Isolating and engineering human antibodies using yeast surface display. Nat. Protoc. 1:755–768, 2006.

Daien, V., et al. Incidence and outcomes of infectious and noninfectious endophthalmitis after intravitreal injections for age-related macular degeneration. Ophthalmology 125:66–74, 2018.

Diabetic Retinopathy Clinical Research Network. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N. Engl. J. Med. 372:1193–1203, 2015.

Ding, K., et al. AAV8-vectored suprachoroidal gene transfer produces widespread ocular transgene expression. J. Clin. Invest. 129:4901–4911, 2019.

Dixon, J. A., S. C. N. Oliver, J. L. Olson, and N. Mandava. VEGF trap-eye for the treatment of neovascular age-related macular degeneration. Expert Opin. Investig. Drugs. 18:1573–1580, 2009.

Falavarjani, K. G., and Q. D. Nguyen. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye 27:787–794, 2013.

Heier, J. S., et al. Intravitreous injection of AAV2-sFLT01 in patients with advanced neovascular age-related macular degeneration: a phase 1, open-label trial. Lancet 390:50–61, 2017.

Ho, C. C. M., et al. “Velcro” engineering of high affinity CD47 ectodomain as signal regulatory protein α (SIRPα) antagonists that enhance antibody-dependent cellular phagocytosis. J. Biol. Chem. 290:12650–12663, 2015.

Holz, F. G., et al. Multi-country real-life experience of anti-vascular endothelial growth factor therapy for wet age-related macular degeneration. Br. J. Ophthalmol. 99:220–226, 2015.

Holz, F. G., S. Schmitz-Valckenberg, and M. Fleckenstein. Recent developments in the treatment of age-related macular degeneration. J. Clin. Invest. 124:1430–1438, 2014.

Jager, R. D., W. F. Mieler, and J. W. Miller. Age-related macular degeneration. N. Engl. J. Med 358:2606–2617, 2008.

Kieran, M. W., R. Kalluri, and Y.-J. Cho. The VEGF pathway in cancer and disease: responses, resistance, and the path forward. Cold Spring Harb. Perspect. Med. 2:1–17, 2012.

Klein, R., et al. Prevalence of age-related macular degeneration in 4 racial/ethnic groups in the multi-ethnic study of atherosclerosis. Ophthalmology 113:373–380, 2006.

Klein, R., B. E. Klein, S. E. Moss, M. D. Davis, and D. L. DeMets. The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch. Ophthalmol. 102:520–526, 1984.

Klein, R., B. E. K. Klein, S. C. Tomany, S. M. Meuer, and G.-H. Huang. Ten-year incidence and progression of age-related maculopathy: the Beaver Dam eye study. Ophthalmology 109:1767–1779, 2002.

Kotterman, M. A., L. Yin, J. M. Strazzeri, J. G. Flannery, W. H. Merigan, and D. V. Schaffer. Antibody neutralization poses a barrier to intravitreal adeno-associated viral vector gene delivery to non-human primates. Gene Ther. 22:116–126, 2015.

Krissinel, E., and K. Henrick. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372:774–797, 2007.

Krohl, P. J., S. D. Ludwig, and J. B. Spangler. Emerging technologies in protein interface engineering for biomedical applications. Curr. Opin. Biotech. 60:82–88, 2019.

Kwak, N., N. Okamoto, J. M. Wood, and P. A. Campochiaro. VEGF is major stimulator in model of choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 41:3158–3164, 2000.

MacDonald, D. A., et al. Aflibercept exhibits VEGF binding stoichiometry distinct from bevacizumab and does not support formation of immune-like complexes. Angiogenesis 19:389–406, 2016.

Markovic-Mueller, S., et al. Structure of the full-length VEGFR-1 extracellular domain in complex with VEGF-A. Structure 25:341–352, 2017.

Pandey Arvind, K., et al. Mechanisms of VEGF (Vascular Endothelial Growth Factor) inhibitor-associated hypertension and vascular disease. Hypertension 71:e1–e8, 2018.

Papadopoulos, N., et al. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis 15:171–185, 2012.

Patel, S. R., D. E. Berezovsky, B. E. McCarey, V. Zarnitsyn, H. F. Edelhauser, and M. R. Prausnitz. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. Invest. Ophthalmol. Vis. Sci. 53:4433–4441, 2012.

Patel, S. R., A. S. P. Lin, H. F. Edelhauser, and M. R. Prausnitz. Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm. Res. 28:166–176, 2011.

Pennington, K. L., and M. M. DeAngelis. Epidemiology of age-related macular degeneration (AMD): associations with cardiovascular disease phenotypes and lipid factors. Eye Vis. (Lond) 3:1–20, 2016.

Rakoczy, E. P., et al. Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial. Lancet 386:2395–2403, 2015.

Raman, S., et al. Structure-guided design fine-tunes pharmacokinetics, tolerability, and antitumor profile of multispecific frizzled antibodies. Proc. Natl. Acad. Sci. USA 116:6812–6817, 2019.

Reichel, F. F., et al. AAV8 can induce innate and adaptive immune response in the primate eye. Mol. Ther. 25:2648–2660, 2017.

Rosenfeld, P. J., et al. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 355:1419–1431, 2006.

Saaddine, J. B., K. M. V. Narayan, and F. Vinicor. Vision loss: a public health problem? Ophthalmology 110:253–254, 2003.

Schlothauer, T., et al. Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions. Protein Eng. Des. Sel. 29:457–466, 2016.

Shen, J., et al. Suprachoroidal gene transfer with nonviral nanoparticles. Sci. Adv. 6:1–10, 2020.

Shmueli, R. B., J. C. Sunshine, Z. Xu, E. J. Duh, and J. J. Green. Gene delivery nanoparticles specific for human microvasculature and macrovasculature. Nanomedicine 8:1200–1207, 2012.

Silva, D.-A., et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature 565:186–191, 2019.

Singer, M. A., et al. HORIZON: an open-label extension trial of ranibizumab for choroidal neovascularization secondary to age-related macular degeneration. Ophthalmology 119:1175–1183, 2012.

Sunshine, J. C., S. B. Sunshine, I. Bhutto, J. T. Handa, and J. J. Green. Poly(β-Amino Ester)-nanoparticle mediated transfection of retinal pigment epithelial cells in vitro and in vivo. PLoS ONE 7:e37543, 2012.

Tzeng, S. Y., L. J. Higgins, M. G. Pomper, and J. J. Green. Biomaterial-mediated cancer-specific DNA delivery to liver cell cultures using synthetic poly(beta-amino ester)s. J. Biomed. Mater. Res. 101A:1837–1845, 2013.

Vitt, U. A., S. Y. Hsu, and A. J. W. Hsueh. Evolution and classification of cystine knot-containing hormones and related extracellular signaling molecules. Mol. Endocrinol. 15:681–694, 2001.

Weiskopf, K., et al. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 341:88–91, 2013.

Wrenbeck, E. E., M. S. Faber, and T. A. Whitehead. Deep sequencing methods for protein engineering and design. Curr. Opin. Struct. Biol. 45:36–44, 2017.

Xiong, W., et al. AAV cis-regulatory sequences are correlated with ocular toxicity. Proc. Natl. Acad. Sci. USA 116:5785–5794, 2019.

Yang, J., et al. Comparison of binding characteristics and in vitro activities of three inhibitors of vascular endothelial growth factor A. Mol. Pharm. 11:3421–3430, 2014.

Yorston, D. Anti-VEGF drugs in the prevention of blindness. Community Eye Health 27:44–46, 2014.