Structure, Function and Dynamics in Adenovirus Maturation

Viruses - Tập 6 Số 11 - Trang 4536-4570
Walter F. Mangel1, Carmen San Martı́n2
1Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA. [email protected].
2Department of Macromolecular Structure and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain

Tóm tắt

Here we review the current knowledge on maturation of adenovirus, a non-enveloped icosahedral eukaryotic virus. The adenovirus dsDNA genome fills the capsid in complex with a large amount of histone-like viral proteins, forming the core. Maturation involves proteolytic cleavage of several capsid and core precursor proteins by the viral protease (AVP). AVP uses a peptide cleaved from one of its targets as a “molecular sled” to slide on the viral genome and reach its substrates, in a remarkable example of one-dimensional chemistry. Immature adenovirus containing the precursor proteins lacks infectivity because of its inability to uncoat. The immature core is more compact and stable than the mature one, due to the condensing action of unprocessed core polypeptides; shell precursors underpin the vertex region and the connections between capsid and core. Maturation makes the virion metastable, priming it for stepwise uncoating by facilitating vertex release and loosening the condensed genome and its attachment to the icosahedral shell. The packaging scaffold protein L1 52/55k is also a substrate for AVP. Proteolytic processing of L1 52/55k disrupts its interactions with other virion components, providing a mechanism for its removal during maturation. Finally, possible roles for maturation of the terminal protein are discussed.

Từ khóa


Tài liệu tham khảo

Knipe, D.M., Howley, P.M., Griffin, D.E., Lamb, R.A., and Martin, M.A. (2007). Fields Virology, Lippincott Williams & Wilkins. [5th ed.].

King, A., Adams, M., Carstens, E., and Lefkowitz, E. (2011). Virus Taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses, Elsevier.

Lasaro, 2009, New insights on adenovirus as vaccine vectors, Mol. Ther., 17, 1333, 10.1038/mt.2009.130

2006, Adenovirus: From foe to friend, Rev. Med. Virol., 16, 167, 10.1002/rmv.494

Yamamoto, 2010, Current issues and future directions of oncolytic adenoviruses, Mol. Ther., 18, 243, 10.1038/mt.2009.266

Carrascosa, 2013, The basic architecture of viruses, Sub-Cell. Biochem., 68, 53, 10.1007/978-94-007-6552-8_2

2012, Latest Insights on Adenovirus Structure and Assembly, Viruses, 4, 847, 10.3390/v4050847

Liu, 2010, Atomic structure of human adenovirus by cryo-EM reveals interactions among protein networks, Science, 329, 1038, 10.1126/science.1187433

Reddy, 2010, Crystal structure of human adenovirus at 3.5 A resolution, Science, 329, 1071, 10.1126/science.1187292

Reddy, 2014, Structures and organization of adenovirus cement proteins provide insights into the role of capsid maturation in virus entry and infection, Proc. Natl. Acad. Sci. USA, 111, 11715, 10.1073/pnas.1408462111

Campos, 2014, New structural model of adenoviral cement proteins is not yet concrete, Proc. Natl. Acad. Sci. USA, 111, E4542, 10.1073/pnas.1415364111

Saban, 2006, Visualization of α-helices in a 6 Å resolution cryoEM structure of adenovirus allows refinement of capsid protein assignments, J. Virol., 80, 12049, 10.1128/JVI.01652-06

Glasgow, 2008, Localization of the N-terminus of minor coat protein IIIa in the adenovirus capsid, J. Mol. Biol., 383, 923, 10.1016/j.jmb.2008.08.054

Scheres, 2005, Classification of single-projection reconstructions for cryo-electron microscopy data of icosahedral viruses, J. Struct. Biol., 151, 79, 10.1016/j.jsb.2005.04.003

Ma, 2011, Adenovirus structural protein IIIa is involved in the serotype specificity of viral DNA packaging, J. Virol., 85, 7849, 10.1128/JVI.00467-11

Blainey, 2013, Regulation of a Viral Proteinase by a Peptide and DNA in One-dimensional Space: IV. Viral proteinase slides along DNA to locate and process its substrates, J. Biol. Chem., 288, 2092, 10.1074/jbc.M112.407460

Greber, 1993, Stepwise dismantling of adenovirus 2 during entry into cells, Cell, 75, 477, 10.1016/0092-8674(93)90382-Z

Burnett, 1985, Molecular composition of the adenovirus type 2 virion, J. Virol., 56, 439, 10.1128/jvi.56.2.439-448.1985

Benevento, 2014, Adenovirus composition, proteolysis, and disassembly studied by in-depth qualitative and quantitative proteomics, J. Biol. Chem., 289, 11421, 10.1074/jbc.M113.537498

Vayda, 1983, The structure of nucleoprotein cores released from adenovirions, Nucleic Acids Res., 11, 441, 10.1093/nar/11.2.441

Mirza, 1982, Structure of adenovirus chromatin, Biochim. Biophys. Acta, 696, 76, 10.1016/0167-4781(82)90012-4

Arnberg, 2012, Adenovirus receptors: Implications for targeting of viral vectors, Trends Pharmacol. Sci., 33, 442, 10.1016/j.tips.2012.04.005

Wickham, 1993, Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment, Cell, 73, 309, 10.1016/0092-8674(93)90231-E

Nakano, 2000, The first step of adenovirus type 2 disassembly occurs at the cell surface, independently of endocytosis and escape to the cytosol, J. Virol., 74, 7085, 10.1128/JVI.74.15.7085-7095.2000

Lindert, 2009, Cryo-electron microscopy structure of an adenovirus-integrin complex indicates conformational changes in both penton base and integrin, J. Virol., 83, 11491, 10.1128/JVI.01214-09

Puntener, 2011, Stepwise loss of fluorescent core protein V from human adenovirus during entry into cells, J. Virol., 85, 481, 10.1128/JVI.01571-10

Wiethoff, 2005, Adenovirus protein VI mediates membrane disruption following capsid disassembly, J. Virol., 79, 1992, 10.1128/JVI.79.4.1992-2000.2005

Wodrich, 2010, A capsid-encoded PPxY-motif facilitates adenovirus entry, PLoS Pathog., 6, e1000808, 10.1371/journal.ppat.1000808

Burckhardt, 2011, Drifting motions of the adenovirus receptor CAR and immobile integrins initiate virus uncoating and membrane lytic protein exposure, Cell Host Microbe, 10, 105, 10.1016/j.chom.2011.07.006

Maier, 2010, An N-terminal domain of adenovirus protein VI fragments membranes by inducing positive membrane curvature, Virology, 402, 11, 10.1016/j.virol.2010.03.043

Suomalainen, 2013, A direct and versatile assay measuring membrane penetration of adenovirus in single cells, J. Virol., 87, 12367, 10.1128/JVI.01833-13

Bremner, 2009, Adenovirus transport via direct interaction of cytoplasmic dynein with the viral capsid hexon subunit, Cell Host Microbe, 6, 523, 10.1016/j.chom.2009.11.006

Greber, 1997, The role of the nuclear pore complex in adenovirus DNA entry, EMBO J., 16, 5998, 10.1093/emboj/16.19.5998

Trotman, 2001, Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1, Nat. Cell Biol., 3, 1092, 10.1038/ncb1201-1092

Suomalainen, 1999, Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus, J. Cell Biol., 144, 657, 10.1083/jcb.144.4.657

Wang, 2013, Tracking viral genomes in host cells at single-molecule resolution, Cell Host Microbe, 14, 468, 10.1016/j.chom.2013.09.004

Walkiewicz, 2009, Accurate single-day titration of adenovirus vectors based on equivalence of protein VII nuclear dots and infectious particles, J. Virol. Methods, 159, 251, 10.1016/j.jviromet.2009.04.010

Gustin, 1998, Encapsidation of viral DNA requires the adenovirus L1 52/55-kilodalton protein, J. Virol., 72, 7860, 10.1128/JVI.72.10.7860-7870.1998

Guimet, 2013, The Adenovirus L4-22K Protein Has Distinct Functions in the Posttranscriptional Regulation of Gene Expression and Encapsidation of the Viral Genome, J. Virol., 87, 7688, 10.1128/JVI.00859-13

Wu, 2013, The Adenovirus L4-33K Protein Regulates both Late Gene Expression Patterns and Viral DNA Packaging, J. Virol., 87, 6739, 10.1128/JVI.00652-13

Ostapchuk, 2011, Characterization of Empty adenovirus particles assembled in the absence of a functional adenovirus IVa2 protein, J. Virol., 85, 5524, 10.1128/JVI.02538-10

Zhang, 2000, Interaction of the adenovirus IVa2 protein with viral packaging sequences, J. Virol., 74, 2687, 10.1128/JVI.74.6.2687-2693.2000

Ostapchuk, 2005, Functional interaction of the adenovirus IVa2 protein with adenovirus type 5 packaging sequences, J. Virol., 79, 2831, 10.1128/JVI.79.5.2831-2838.2005

Tyler, 2005, Analysis of the interaction of the adenovirus L1 52/55-kilodalton and IVa2 proteins with the packaging sequence in vivo and in vitro, J. Virol., 79, 2366, 10.1128/JVI.79.4.2366-2374.2005

Ostapchuk, 2006, The L4 22-kilodalton protein plays a role in packaging of the adenovirus genome, J. Virol., 80, 6973, 10.1128/JVI.00123-06

Hasson, 1992, Adenovirus L1 52- and 55-kilodalton proteins are present within assembling virions and colocalize with nuclear structures distinct from replication centers, J. Virol., 66, 6133, 10.1128/jvi.66.10.6133-6142.1992

Ishibashi, 1974, The polypeptides of adenovirus. V. Young virions, structural intermediate between top components and aged virions, Virology, 57, 409, 10.1016/0042-6822(74)90181-0

Seth, P. (1999). Adenoviruses: Basic Biology to Gene Therapy, R.G. Landes.

Cotten, 1995, The adenovirus protease is required for virus entry into host cells, Virology, 213, 494, 10.1006/viro.1995.0022

Gastaldelli, 2008, Infectious adenovirus type 2 transport through early but not late endosomes, Traffic, 9, 2265, 10.1111/j.1600-0854.2008.00835.x

Weber, 1976, Genetic analysis of adenovirus type 2 III. Temperature sensitivity of processing viral proteins, J. Virol., 17, 462, 10.1128/jvi.17.2.462-471.1976

Mangel, 1996, Characterization of three components of human adenovirus proteinase activity in vitro, J. Biol. Chem., 271, 536, 10.1074/jbc.271.1.536

Blanche, 2001, Polypeptide composition of an adenovirus type 5 used in cancer gene therapy, J. Chromatogr. A, 921, 39, 10.1016/S0021-9673(01)00896-2

Challberg, 1981, Processing of the adenovirus terminal protein, J. Virol., 38, 272, 10.1128/jvi.38.1.272-277.1981

Davison, 2003, Genetic content and evolution of adenoviruses, J. Gen. Virol., 84, 2895, 10.1099/vir.0.19497-0

Webster, 1993, The active adenovirus protease is the intact L3 23K protein, J. Gen. Virol., 74, 1415, 10.1099/0022-1317-74-7-1415

Anderson, 1990, The proteinase polypeptide of adenovirus serotype 2 virions, Virology, 177, 259, 10.1016/0042-6822(90)90479-B

Brown, 1996, Different modes of inhibition of human adenovirus proteinase, probably a cysteine proteinase, by bovine pancreatic trypsin inhibitor, FEBS Lett., 388, 233, 10.1016/0014-5793(96)00569-8

Zhang, 2005, Interaction of the adenovirus major core protein precursor, pVII, with the viral DNA packaging machinery, Virology, 334, 194, 10.1016/j.virol.2005.01.048

Mangel, 2014, Processing of the L1 52/55k protein by the adenovirus protease: A new substrate and new insights into virion maturation, J. Virol., 88, 1513, 10.1128/JVI.02884-13

Akusjarvi, 1983, Genetic identification of an endopeptidase encoded by the adenovirus genome, J. Mol. Biol., 167, 217, 10.1016/S0022-2836(83)80044-8

Anderson, 1993, Expression and purification of the adenovirus proteinase polypeptide and of a synthetic proteinase substrate, Protein Express. Purif., 4, 8, 10.1006/prep.1993.1002

Tihanyi, 1993, Isolation and properties of adenovirus type 2 proteinase, J. Biol. Chem., 268, 1780, 10.1016/S0021-9258(18)53921-1

Webster, 1993, The adenovirus protease is activated by a virus-coded disulphide-linked peptide, Cell, 72, 97, 10.1016/0092-8674(93)90053-S

Rancourt, 1995, Proline 137 is critical for adenovirus protease encapsidation and activation but not enzyme activity, Virology, 209, 167, 10.1006/viro.1995.1240

Imelli, 2009, Genetic reconstitution of the human adenovirus type 2 temperature-sensitive 1 mutant defective in endosomal escape, Virol. J., 6, 174, 10.1186/1743-422X-6-174

Diouri, 1996, Cleavage efficiency by adenovirus protease is site-dependent, J. Biol. Chem., 271, 32511, 10.1074/jbc.271.51.32511

Webster, 1989, Characterization of the adenovirus proteinase: Substrate specificity, J. Gen. Virol., 70, 3225, 10.1099/0022-1317-70-12-3225

Webster, 1997, Role of preterminal protein processing in adenovirus replication, J. Virol., 71, 6381, 10.1128/jvi.71.9.6381-6389.1997

Notredame, 2000, T-Coffee: A novel method for fast and accurate multiple sequence alignment, J. Mol. Biol., 302, 205, 10.1006/jmbi.2000.4042

Waterhouse, 2009, Jalview Version 2—A multiple sequence alignment editor and analysis workbench, Bioinformatics, 25, 1189, 10.1093/bioinformatics/btp033

Leytus, 1983, Rhodamine-based compounds as fluorogenic substrates for serine proteases, Biochem. J., 209, 299, 10.1042/bj2090299

Leytus, 1983, New class of sensitive, specific, and selective substrates for serine proteinases: Fluorogenic, amino acid peptide derivatives of Rhodamine, Biochem. J., 215, 253, 10.1042/bj2150253

Webster, 1989, Characterization of the adenovirus proteinase; development and use of a specific peptide assay, J. Gen. Virol., 70, 3215, 10.1099/0022-1317-70-12-3215

Mangel, 1993, Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity, Nature, 361, 274, 10.1038/361274a0

McGrath, 1996, Characterization of human adenovirus proteinase activity in disrupted virus particles, Virology, 217, 131, 10.1006/viro.1996.0100

Bajpayee, 2005, Interaction of the adenovirus proteinase with protein cofactors with high negative charge densities, Biochemistry, 44, 8721, 10.1021/bi0502240

McGrath, 2001, Human adenovirus proteinase: DNA binding and stimulation of proteinase activity by DNA, Biochemistry, 40, 13237, 10.1021/bi0111653

Xu, 1995, Crystal structure of a conserved protease that binds DNA: The bleomycin hydrolase, Gal6, Science, 269, 945, 10.1126/science.7638617

Staufenbiel, 1986, Progressive reorganization of the host cell cytoskeleton during adenovirus infection, J. Virol., 60, 1186, 10.1128/jvi.60.3.1186-1191.1986

Chen, 1993, The adenovirus L3 23-Kilodalton proteinase cleaves the amino-terminal head domain from cytokeratin 18 and disrupts the cytokeratin network of HeLa cells, J. Virol., 67, 3507, 10.1128/jvi.67.6.3507-3514.1993

Brown, 2002, Actin can act as a cofactor for a viral proteinase, in the cleavage of the cytoskeleton, J. Biol. Chem., 277, 46298, 10.1074/jbc.M202988200

Schutt, 1993, The structure of crystalline profilin-beta-actin, Nature, 365, 810, 10.1038/365810a0

Akusjarvi, 1981, Gene and mRNA for precursor polypeptide VI from adenovirus type 2, J. Virol., 38, 469, 10.1128/jvi.38.2.469-482.1981

Cai, 1993, Organization of the avian adenovirus genome and the structure of its endopeptidase, Virology, 196, 358, 10.1006/viro.1993.1489

McGrath, 1996, Preparation and crystallization of a complex between human adenovirus serotype 2 proteinase and its 11-amino-acid cofactor pVIc, J. Struct. Biol., 117, 77, 10.1006/jsbi.1996.0072

Ding, 1996, Crystal structure of the human adenovirus proteinase with its 11 amino acid cofactor, EMBO J., 15, 1778, 10.1002/j.1460-2075.1996.tb00526.x

McGrath, 2003, Crystallographic structure at 1.6-Å resolution of the human adenovirus proteinase in a covalent complex with its 11-amino-acid peptide cofactor: Insights on a new fold, Biochem. Biophys. Acta, 1648, 1

Mangel, 1997, Temporal and spatial control of the adenovirus proteinase by both a peptide and the viral DNA, Trends Biochem. Sci., 22, 393, 10.1016/S0968-0004(97)01123-7

Pettersen, 2004, UCSF Chimera—A visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605, 10.1002/jcc.20084

Storer, 1994, Catalytic mechanism in papain family of cysteine peptidases, Methods Enzymol., 244, 486, 10.1016/0076-6879(94)44035-2

Robertus, 1972, Subtilisin; a stereochemical mechanism involving transition-state stabilization, Biochemistry, 11, 4293, 10.1021/bi00773a016

Drenth, 1976, Binding of chloromethyl ketone substrate analogues to crystalline papain, Biochemistry, 15, 3731, 10.1021/bi00662a014

Baniecki, 2013, Regulation of a viral proteinase by a peptide and DNA in one-dimensional space: III. Atomic resolution structure of the nascent form of the adenovirus proteinase, J. Biol. Chem., 288, 2081, 10.1074/jbc.M112.407429

Gupta, 2004, DNA binding provides a molecular strap activating the adenovirus proteinase, Mol. Cell. Proteomics, 3, 950, 10.1074/mcp.M400037-MCP200

Gupta, 2005, Mapping a functional viral protein in solution using synchrotron X-ray footprinting technology, Synchrotron Radiat. News, 18, 25, 10.1080/08940880500457537

Baniecki, 2001, Interaction of the human adenovirus proteinase with its 11-amino acid cofactor pVIc, Biochemistry, 40, 12349, 10.1021/bi0109008

Baniecki, 2001, Interaction of the human adenovirus proteinase with its 11-amino acid cofactor pVIc, Biochemistry, 41, 430, 10.1021/bi015150g

McGrath, 2001, Roles of two conserved cysteine residues in the activation of human adenovirus proteinase, Biochemistry, 40, 14468, 10.1021/bi011562d

McGrath, 2002, In the virion, the 11-amino-acid peptide cofactor pVIc is covalently linked to the adenovirus proteinase, Virology, 296, 234, 10.1006/viro.2002.1394

Bogan, 1998, Anatomy of hot spots in protein interfaces, J. Mol. Biol., 280, 1, 10.1006/jmbi.1998.1843

Russell, 1982, Nucleic acid-binding properties of adenovirus structural polypeptides, J. Gen. Virol., 63, 69, 10.1099/0022-1317-63-1-69

Record, 1976, Ion effects on ligand-nucleic acid interactions, J. Mol. Biol., 107, 145, 10.1016/S0022-2836(76)80023-X

Graziano, 2013, Regulation of a viral proteinase by a peptide and DNA in one-dimensional space: I. Binding to DNA and to hexon of the precursor to protein VI, pVI, of human adenovirus, J. Biol. Chem., 288, 2059, 10.1074/jbc.M112.377150

Chiu, W., Burnett, R.M., and Garcea, R.L. (1997). Structural Biology of Viruses, Oxford University Press.

Mangenot, 2003, Transport of nucleosome core particles in semidilute DNA solutions, Biophys. J., 85, 1817, 10.1016/S0006-3495(03)74610-4

Russell, 2009, Adenoviruses: Update on structure and function, J. Gen. Virol., 90, 1, 10.1099/vir.0.003087-0

Graziano, 2013, Regulation of a viral proteinase by a peptide and DNA in one-dimensional space: II. Adenovirus proteinase is activated in an unusual one-dimensional biochemical reaction, J. Biol. Chem., 288, 2068, 10.1074/jbc.M112.407312

Webster, 1994, Activation of adenovirus-coded protease and processing of preterminal protein, J. Virol., 68, 7292, 10.1128/jvi.68.11.7292-7300.1994

Chatterjee, 1986, Identification of proteins and protein domains that contact DNA within adenovirus nucleoprotein cores by ultraviolet light crosslinking of oligonucleotides 32P-labelled in vivo, J. Mol. Biol., 188, 23, 10.1016/0022-2836(86)90477-8

Greber, 1998, Virus assembly and disassembly: The adenovirus cysteine protease as a trigger factor, Rev. Med. Virol., 8, 213, 10.1002/(SICI)1099-1654(1998100)8:4<213::AID-RMV225>3.0.CO;2-W

Blainey, 2009, Nonspecifically bound proteins spin while diffusing along DNA, Nat. Struct. Mol. Biol., 16, 1224, 10.1038/nsmb.1716

Brandt, 1969, Infections in 18,000 infants and children in a controlled study of respiratory tract disease. I. Adenovirus pathogenicity in relation to serologic type and illness syndrome, Am. J. Epidemiol., 90, 484, 10.1093/oxfordjournals.aje.a121094

Mallet, 1966, Les pneumopathies graves a adeno-virus, Arch. Fr. Pediatr., 23, 1057

Kohoo, 1995, Adenovirus infections in human immunodeficiency virus-positive patients: Clinical features and molecular epidemiology, J. Infect. Dis., 172, 629, 10.1093/infdis/172.3.629

Mogabgab, 1968, Mycoplasma pneumonia and adenovirus respiratory illnesses in military and university personnel, Am. Rev. Respir. Dis., 97, 345

Gray, 1999, Respiratory diseases among U.S. military personnel: Countering emerging threats, Emerg. Infect. Dis., 5, 379, 10.3201/eid0503.990308

Atkinson, 2005, Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids, Int. J. Obes., 29, 281, 10.1038/sj.ijo.0802830

Centers for Disease Control and Prevention (CDC) (2007). Acute respiratory disease associated with adenovirus serotype 14—Four states, 2006–2007. MMWR, 56, 1181–1184.

Mangel, 2001, Prevention of viral drug resistance by novel combination therapy, Curr. Opin. Investig. Drugs, 2, 613

Mangel, 2001, A new form of antiviral combination therapy predicted to prevent resistance from arising, and a model system to test it, Curr. Med. Chem., 8, 933, 10.2174/0929867013372742

Korant, 2000, Adenovirus proteinase-antiviral target for triple-combination therapy on a single enzyme: Potential inhibitor-binding sites, Proteases as Targets for Therapy, Volume 140, 145, 10.1007/978-3-642-57092-6_8

Pang, 2001, Discovery of a new inhibitor lead of adenovirus proteinase: Steps toward selective, irreversible inhibitors of cysteine proteinases, FEBS Lett., 502, 93, 10.1016/S0014-5793(01)02672-2

McGrath, 2013, First generation inhibitors of the adenovirus proteinase, FEBS Lett., 587, 2332, 10.1016/j.febslet.2013.05.033

Veesler, 2012, Virus Maturation, Annu. Rev. Biophys., 41, 473, 10.1146/annurev-biophys-042910-155407

Johnson, 2010, Virus particle maturation: Insights into elegantly programmed nanomachines, Curr. Opin. Struct. Biol., 20, 210, 10.1016/j.sbi.2010.01.004

Silvestry, 2009, Cryo-electron microscopy structure of adenovirus type 2 temperature-sensitive mutant 1 reveals insight into the cell entry defect, J. Virol., 83, 7375, 10.1128/JVI.00331-09

Marabini, 2009, Structure and uncoating of immature adenovirus, J. Mol. Biol., 392, 547, 10.1016/j.jmb.2009.06.057

Snijder, 2014, The cleaved N-terminus of pVI binds peripentonal hexons in mature adenovirus, J. Mol. Biol., 426, 1971, 10.1016/j.jmb.2014.02.022

Hannan, 1983, Biological and structural studies with an adenovirus type 2 temperature-sensitive mutant defective for uncoating, Intervirology, 19, 213, 10.1159/000149363

Winkler, 2012, The role of capsid maturation on adenovirus priming for sequential uncoating, J. Biol. Chem., 287, 31582, 10.1074/jbc.M112.389957

Johnson, 2007, DNA packaging and delivery machines in tailed bacteriophages, Curr. Opin. Struct. Biol., 17, 237, 10.1016/j.sbi.2007.03.011

Hogle, 2002, Poliovirus cell entry: Common structural themes in viral cell entry pathways, Annu. Rev. Microbiol., 56, 677, 10.1146/annurev.micro.56.012302.160757

Ortega-Esteban, A., Pérez-Berná, A.J., Menéndez-Conejero, R., Flint, S.J., San Martín, C., and de Pablo, P.J. (2013). Monitoring dynamics of human adenovirus disassembly induced by mechanical fatigue. Sci. Rep., 3.

Nociari, 2007, Sensing infection by adenovirus: Toll-like receptor-independent viral DNA recognition signals activation of the interferon regulatory factor 3 master regulator, J. Virol., 81, 4145, 10.1128/JVI.02685-06

Gustin, 1996, Interaction of the adenovirus L1 52/55-kilodalton protein with the IVa2 gene product during infection, J. Virol., 70, 6463, 10.1128/jvi.70.9.6463-6467.1996

Rekosh, 1977, Identification of a protein linked to the ends of adenovirus DNA, Cell, 11, 283, 10.1016/0092-8674(77)90045-9

Stillman, 1981, Identification of the gene and mRNA for the adenovirus terminal protein precursor, Cell, 23, 497, 10.1016/0092-8674(81)90145-8

Doerfler, 2003, Adenovirus DNA replication, Adenoviruses: Model and Vectors in Virus Host Interactions. Current Topics in Microbiology and Immunology, Volume 272, 131

Khittoo, 1986, Role of the nuclear matrix in adenovirus maturation, Virus Res., 4, 391, 10.1016/0168-1702(86)90085-7

King, 1994, A precursor terminal protein-trinucleotide intermediate during initiation of adenovirus DNA replication: Regeneration of molecular ends in vitro by a jumping back mechanism, EMBO J., 13, 5786, 10.1002/j.1460-2075.1994.tb06917.x

Pronk, 1992, Adenovirus DNA replication: The function of the covalently bound terminal protein, Chromosoma, 102, S39, 10.1007/BF02451784

Kato, 2012, Reduced infectivity of adenovirus type 5 particles and degradation of entering viral genomes associated with incomplete processing of the preterminal protein, J. Virol., 86, 13554, 10.1128/JVI.02337-12

Kuhlbrandt, 2014, Cryo-EM enters a new era, eLife, 3, e03678, 10.7554/eLife.03678

Uetrecht, 2011, Modern biomolecular mass spectrometry and its role in studying virus structure, dynamics, and assembly, Angew. Chem. Int. Ed. Engl., 50, 8248, 10.1002/anie.201008120