Structure, Function and Dynamics in Adenovirus Maturation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Knipe, D.M., Howley, P.M., Griffin, D.E., Lamb, R.A., and Martin, M.A. (2007). Fields Virology, Lippincott Williams & Wilkins. [5th ed.].
King, A., Adams, M., Carstens, E., and Lefkowitz, E. (2011). Virus Taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses, Elsevier.
Lasaro, 2009, New insights on adenovirus as vaccine vectors, Mol. Ther., 17, 1333, 10.1038/mt.2009.130
Yamamoto, 2010, Current issues and future directions of oncolytic adenoviruses, Mol. Ther., 18, 243, 10.1038/mt.2009.266
Carrascosa, 2013, The basic architecture of viruses, Sub-Cell. Biochem., 68, 53, 10.1007/978-94-007-6552-8_2
Liu, 2010, Atomic structure of human adenovirus by cryo-EM reveals interactions among protein networks, Science, 329, 1038, 10.1126/science.1187433
Reddy, 2010, Crystal structure of human adenovirus at 3.5 A resolution, Science, 329, 1071, 10.1126/science.1187292
Reddy, 2014, Structures and organization of adenovirus cement proteins provide insights into the role of capsid maturation in virus entry and infection, Proc. Natl. Acad. Sci. USA, 111, 11715, 10.1073/pnas.1408462111
Campos, 2014, New structural model of adenoviral cement proteins is not yet concrete, Proc. Natl. Acad. Sci. USA, 111, E4542, 10.1073/pnas.1415364111
Saban, 2006, Visualization of α-helices in a 6 Å resolution cryoEM structure of adenovirus allows refinement of capsid protein assignments, J. Virol., 80, 12049, 10.1128/JVI.01652-06
Glasgow, 2008, Localization of the N-terminus of minor coat protein IIIa in the adenovirus capsid, J. Mol. Biol., 383, 923, 10.1016/j.jmb.2008.08.054
Scheres, 2005, Classification of single-projection reconstructions for cryo-electron microscopy data of icosahedral viruses, J. Struct. Biol., 151, 79, 10.1016/j.jsb.2005.04.003
Ma, 2011, Adenovirus structural protein IIIa is involved in the serotype specificity of viral DNA packaging, J. Virol., 85, 7849, 10.1128/JVI.00467-11
Blainey, 2013, Regulation of a Viral Proteinase by a Peptide and DNA in One-dimensional Space: IV. Viral proteinase slides along DNA to locate and process its substrates, J. Biol. Chem., 288, 2092, 10.1074/jbc.M112.407460
Greber, 1993, Stepwise dismantling of adenovirus 2 during entry into cells, Cell, 75, 477, 10.1016/0092-8674(93)90382-Z
Burnett, 1985, Molecular composition of the adenovirus type 2 virion, J. Virol., 56, 439, 10.1128/jvi.56.2.439-448.1985
Benevento, 2014, Adenovirus composition, proteolysis, and disassembly studied by in-depth qualitative and quantitative proteomics, J. Biol. Chem., 289, 11421, 10.1074/jbc.M113.537498
Vayda, 1983, The structure of nucleoprotein cores released from adenovirions, Nucleic Acids Res., 11, 441, 10.1093/nar/11.2.441
Mirza, 1982, Structure of adenovirus chromatin, Biochim. Biophys. Acta, 696, 76, 10.1016/0167-4781(82)90012-4
Arnberg, 2012, Adenovirus receptors: Implications for targeting of viral vectors, Trends Pharmacol. Sci., 33, 442, 10.1016/j.tips.2012.04.005
Wickham, 1993, Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment, Cell, 73, 309, 10.1016/0092-8674(93)90231-E
Nakano, 2000, The first step of adenovirus type 2 disassembly occurs at the cell surface, independently of endocytosis and escape to the cytosol, J. Virol., 74, 7085, 10.1128/JVI.74.15.7085-7095.2000
Lindert, 2009, Cryo-electron microscopy structure of an adenovirus-integrin complex indicates conformational changes in both penton base and integrin, J. Virol., 83, 11491, 10.1128/JVI.01214-09
Puntener, 2011, Stepwise loss of fluorescent core protein V from human adenovirus during entry into cells, J. Virol., 85, 481, 10.1128/JVI.01571-10
Wiethoff, 2005, Adenovirus protein VI mediates membrane disruption following capsid disassembly, J. Virol., 79, 1992, 10.1128/JVI.79.4.1992-2000.2005
Wodrich, 2010, A capsid-encoded PPxY-motif facilitates adenovirus entry, PLoS Pathog., 6, e1000808, 10.1371/journal.ppat.1000808
Burckhardt, 2011, Drifting motions of the adenovirus receptor CAR and immobile integrins initiate virus uncoating and membrane lytic protein exposure, Cell Host Microbe, 10, 105, 10.1016/j.chom.2011.07.006
Maier, 2010, An N-terminal domain of adenovirus protein VI fragments membranes by inducing positive membrane curvature, Virology, 402, 11, 10.1016/j.virol.2010.03.043
Suomalainen, 2013, A direct and versatile assay measuring membrane penetration of adenovirus in single cells, J. Virol., 87, 12367, 10.1128/JVI.01833-13
Bremner, 2009, Adenovirus transport via direct interaction of cytoplasmic dynein with the viral capsid hexon subunit, Cell Host Microbe, 6, 523, 10.1016/j.chom.2009.11.006
Greber, 1997, The role of the nuclear pore complex in adenovirus DNA entry, EMBO J., 16, 5998, 10.1093/emboj/16.19.5998
Trotman, 2001, Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1, Nat. Cell Biol., 3, 1092, 10.1038/ncb1201-1092
Suomalainen, 1999, Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus, J. Cell Biol., 144, 657, 10.1083/jcb.144.4.657
Wang, 2013, Tracking viral genomes in host cells at single-molecule resolution, Cell Host Microbe, 14, 468, 10.1016/j.chom.2013.09.004
Walkiewicz, 2009, Accurate single-day titration of adenovirus vectors based on equivalence of protein VII nuclear dots and infectious particles, J. Virol. Methods, 159, 251, 10.1016/j.jviromet.2009.04.010
Gustin, 1998, Encapsidation of viral DNA requires the adenovirus L1 52/55-kilodalton protein, J. Virol., 72, 7860, 10.1128/JVI.72.10.7860-7870.1998
Guimet, 2013, The Adenovirus L4-22K Protein Has Distinct Functions in the Posttranscriptional Regulation of Gene Expression and Encapsidation of the Viral Genome, J. Virol., 87, 7688, 10.1128/JVI.00859-13
Wu, 2013, The Adenovirus L4-33K Protein Regulates both Late Gene Expression Patterns and Viral DNA Packaging, J. Virol., 87, 6739, 10.1128/JVI.00652-13
Ostapchuk, 2011, Characterization of Empty adenovirus particles assembled in the absence of a functional adenovirus IVa2 protein, J. Virol., 85, 5524, 10.1128/JVI.02538-10
Zhang, 2000, Interaction of the adenovirus IVa2 protein with viral packaging sequences, J. Virol., 74, 2687, 10.1128/JVI.74.6.2687-2693.2000
Ostapchuk, 2005, Functional interaction of the adenovirus IVa2 protein with adenovirus type 5 packaging sequences, J. Virol., 79, 2831, 10.1128/JVI.79.5.2831-2838.2005
Tyler, 2005, Analysis of the interaction of the adenovirus L1 52/55-kilodalton and IVa2 proteins with the packaging sequence in vivo and in vitro, J. Virol., 79, 2366, 10.1128/JVI.79.4.2366-2374.2005
Ostapchuk, 2006, The L4 22-kilodalton protein plays a role in packaging of the adenovirus genome, J. Virol., 80, 6973, 10.1128/JVI.00123-06
Hasson, 1992, Adenovirus L1 52- and 55-kilodalton proteins are present within assembling virions and colocalize with nuclear structures distinct from replication centers, J. Virol., 66, 6133, 10.1128/jvi.66.10.6133-6142.1992
Ishibashi, 1974, The polypeptides of adenovirus. V. Young virions, structural intermediate between top components and aged virions, Virology, 57, 409, 10.1016/0042-6822(74)90181-0
Seth, P. (1999). Adenoviruses: Basic Biology to Gene Therapy, R.G. Landes.
Cotten, 1995, The adenovirus protease is required for virus entry into host cells, Virology, 213, 494, 10.1006/viro.1995.0022
Gastaldelli, 2008, Infectious adenovirus type 2 transport through early but not late endosomes, Traffic, 9, 2265, 10.1111/j.1600-0854.2008.00835.x
Weber, 1976, Genetic analysis of adenovirus type 2 III. Temperature sensitivity of processing viral proteins, J. Virol., 17, 462, 10.1128/jvi.17.2.462-471.1976
Mangel, 1996, Characterization of three components of human adenovirus proteinase activity in vitro, J. Biol. Chem., 271, 536, 10.1074/jbc.271.1.536
Blanche, 2001, Polypeptide composition of an adenovirus type 5 used in cancer gene therapy, J. Chromatogr. A, 921, 39, 10.1016/S0021-9673(01)00896-2
Challberg, 1981, Processing of the adenovirus terminal protein, J. Virol., 38, 272, 10.1128/jvi.38.1.272-277.1981
Davison, 2003, Genetic content and evolution of adenoviruses, J. Gen. Virol., 84, 2895, 10.1099/vir.0.19497-0
Webster, 1993, The active adenovirus protease is the intact L3 23K protein, J. Gen. Virol., 74, 1415, 10.1099/0022-1317-74-7-1415
Anderson, 1990, The proteinase polypeptide of adenovirus serotype 2 virions, Virology, 177, 259, 10.1016/0042-6822(90)90479-B
Brown, 1996, Different modes of inhibition of human adenovirus proteinase, probably a cysteine proteinase, by bovine pancreatic trypsin inhibitor, FEBS Lett., 388, 233, 10.1016/0014-5793(96)00569-8
Zhang, 2005, Interaction of the adenovirus major core protein precursor, pVII, with the viral DNA packaging machinery, Virology, 334, 194, 10.1016/j.virol.2005.01.048
Mangel, 2014, Processing of the L1 52/55k protein by the adenovirus protease: A new substrate and new insights into virion maturation, J. Virol., 88, 1513, 10.1128/JVI.02884-13
Akusjarvi, 1983, Genetic identification of an endopeptidase encoded by the adenovirus genome, J. Mol. Biol., 167, 217, 10.1016/S0022-2836(83)80044-8
Anderson, 1993, Expression and purification of the adenovirus proteinase polypeptide and of a synthetic proteinase substrate, Protein Express. Purif., 4, 8, 10.1006/prep.1993.1002
Tihanyi, 1993, Isolation and properties of adenovirus type 2 proteinase, J. Biol. Chem., 268, 1780, 10.1016/S0021-9258(18)53921-1
Webster, 1993, The adenovirus protease is activated by a virus-coded disulphide-linked peptide, Cell, 72, 97, 10.1016/0092-8674(93)90053-S
Rancourt, 1995, Proline 137 is critical for adenovirus protease encapsidation and activation but not enzyme activity, Virology, 209, 167, 10.1006/viro.1995.1240
Imelli, 2009, Genetic reconstitution of the human adenovirus type 2 temperature-sensitive 1 mutant defective in endosomal escape, Virol. J., 6, 174, 10.1186/1743-422X-6-174
Diouri, 1996, Cleavage efficiency by adenovirus protease is site-dependent, J. Biol. Chem., 271, 32511, 10.1074/jbc.271.51.32511
Webster, 1989, Characterization of the adenovirus proteinase: Substrate specificity, J. Gen. Virol., 70, 3225, 10.1099/0022-1317-70-12-3225
Webster, 1997, Role of preterminal protein processing in adenovirus replication, J. Virol., 71, 6381, 10.1128/jvi.71.9.6381-6389.1997
Notredame, 2000, T-Coffee: A novel method for fast and accurate multiple sequence alignment, J. Mol. Biol., 302, 205, 10.1006/jmbi.2000.4042
Waterhouse, 2009, Jalview Version 2—A multiple sequence alignment editor and analysis workbench, Bioinformatics, 25, 1189, 10.1093/bioinformatics/btp033
Leytus, 1983, Rhodamine-based compounds as fluorogenic substrates for serine proteases, Biochem. J., 209, 299, 10.1042/bj2090299
Leytus, 1983, New class of sensitive, specific, and selective substrates for serine proteinases: Fluorogenic, amino acid peptide derivatives of Rhodamine, Biochem. J., 215, 253, 10.1042/bj2150253
Webster, 1989, Characterization of the adenovirus proteinase; development and use of a specific peptide assay, J. Gen. Virol., 70, 3215, 10.1099/0022-1317-70-12-3215
Mangel, 1993, Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity, Nature, 361, 274, 10.1038/361274a0
McGrath, 1996, Characterization of human adenovirus proteinase activity in disrupted virus particles, Virology, 217, 131, 10.1006/viro.1996.0100
Bajpayee, 2005, Interaction of the adenovirus proteinase with protein cofactors with high negative charge densities, Biochemistry, 44, 8721, 10.1021/bi0502240
McGrath, 2001, Human adenovirus proteinase: DNA binding and stimulation of proteinase activity by DNA, Biochemistry, 40, 13237, 10.1021/bi0111653
Xu, 1995, Crystal structure of a conserved protease that binds DNA: The bleomycin hydrolase, Gal6, Science, 269, 945, 10.1126/science.7638617
Staufenbiel, 1986, Progressive reorganization of the host cell cytoskeleton during adenovirus infection, J. Virol., 60, 1186, 10.1128/jvi.60.3.1186-1191.1986
Chen, 1993, The adenovirus L3 23-Kilodalton proteinase cleaves the amino-terminal head domain from cytokeratin 18 and disrupts the cytokeratin network of HeLa cells, J. Virol., 67, 3507, 10.1128/jvi.67.6.3507-3514.1993
Brown, 2002, Actin can act as a cofactor for a viral proteinase, in the cleavage of the cytoskeleton, J. Biol. Chem., 277, 46298, 10.1074/jbc.M202988200
Akusjarvi, 1981, Gene and mRNA for precursor polypeptide VI from adenovirus type 2, J. Virol., 38, 469, 10.1128/jvi.38.2.469-482.1981
Cai, 1993, Organization of the avian adenovirus genome and the structure of its endopeptidase, Virology, 196, 358, 10.1006/viro.1993.1489
McGrath, 1996, Preparation and crystallization of a complex between human adenovirus serotype 2 proteinase and its 11-amino-acid cofactor pVIc, J. Struct. Biol., 117, 77, 10.1006/jsbi.1996.0072
Ding, 1996, Crystal structure of the human adenovirus proteinase with its 11 amino acid cofactor, EMBO J., 15, 1778, 10.1002/j.1460-2075.1996.tb00526.x
McGrath, 2003, Crystallographic structure at 1.6-Å resolution of the human adenovirus proteinase in a covalent complex with its 11-amino-acid peptide cofactor: Insights on a new fold, Biochem. Biophys. Acta, 1648, 1
Mangel, 1997, Temporal and spatial control of the adenovirus proteinase by both a peptide and the viral DNA, Trends Biochem. Sci., 22, 393, 10.1016/S0968-0004(97)01123-7
Pettersen, 2004, UCSF Chimera—A visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605, 10.1002/jcc.20084
Storer, 1994, Catalytic mechanism in papain family of cysteine peptidases, Methods Enzymol., 244, 486, 10.1016/0076-6879(94)44035-2
Robertus, 1972, Subtilisin; a stereochemical mechanism involving transition-state stabilization, Biochemistry, 11, 4293, 10.1021/bi00773a016
Drenth, 1976, Binding of chloromethyl ketone substrate analogues to crystalline papain, Biochemistry, 15, 3731, 10.1021/bi00662a014
Baniecki, 2013, Regulation of a viral proteinase by a peptide and DNA in one-dimensional space: III. Atomic resolution structure of the nascent form of the adenovirus proteinase, J. Biol. Chem., 288, 2081, 10.1074/jbc.M112.407429
Gupta, 2004, DNA binding provides a molecular strap activating the adenovirus proteinase, Mol. Cell. Proteomics, 3, 950, 10.1074/mcp.M400037-MCP200
Gupta, 2005, Mapping a functional viral protein in solution using synchrotron X-ray footprinting technology, Synchrotron Radiat. News, 18, 25, 10.1080/08940880500457537
Baniecki, 2001, Interaction of the human adenovirus proteinase with its 11-amino acid cofactor pVIc, Biochemistry, 40, 12349, 10.1021/bi0109008
Baniecki, 2001, Interaction of the human adenovirus proteinase with its 11-amino acid cofactor pVIc, Biochemistry, 41, 430, 10.1021/bi015150g
McGrath, 2001, Roles of two conserved cysteine residues in the activation of human adenovirus proteinase, Biochemistry, 40, 14468, 10.1021/bi011562d
McGrath, 2002, In the virion, the 11-amino-acid peptide cofactor pVIc is covalently linked to the adenovirus proteinase, Virology, 296, 234, 10.1006/viro.2002.1394
Bogan, 1998, Anatomy of hot spots in protein interfaces, J. Mol. Biol., 280, 1, 10.1006/jmbi.1998.1843
Russell, 1982, Nucleic acid-binding properties of adenovirus structural polypeptides, J. Gen. Virol., 63, 69, 10.1099/0022-1317-63-1-69
Record, 1976, Ion effects on ligand-nucleic acid interactions, J. Mol. Biol., 107, 145, 10.1016/S0022-2836(76)80023-X
Graziano, 2013, Regulation of a viral proteinase by a peptide and DNA in one-dimensional space: I. Binding to DNA and to hexon of the precursor to protein VI, pVI, of human adenovirus, J. Biol. Chem., 288, 2059, 10.1074/jbc.M112.377150
Chiu, W., Burnett, R.M., and Garcea, R.L. (1997). Structural Biology of Viruses, Oxford University Press.
Mangenot, 2003, Transport of nucleosome core particles in semidilute DNA solutions, Biophys. J., 85, 1817, 10.1016/S0006-3495(03)74610-4
Russell, 2009, Adenoviruses: Update on structure and function, J. Gen. Virol., 90, 1, 10.1099/vir.0.003087-0
Graziano, 2013, Regulation of a viral proteinase by a peptide and DNA in one-dimensional space: II. Adenovirus proteinase is activated in an unusual one-dimensional biochemical reaction, J. Biol. Chem., 288, 2068, 10.1074/jbc.M112.407312
Webster, 1994, Activation of adenovirus-coded protease and processing of preterminal protein, J. Virol., 68, 7292, 10.1128/jvi.68.11.7292-7300.1994
Chatterjee, 1986, Identification of proteins and protein domains that contact DNA within adenovirus nucleoprotein cores by ultraviolet light crosslinking of oligonucleotides 32P-labelled in vivo, J. Mol. Biol., 188, 23, 10.1016/0022-2836(86)90477-8
Greber, 1998, Virus assembly and disassembly: The adenovirus cysteine protease as a trigger factor, Rev. Med. Virol., 8, 213, 10.1002/(SICI)1099-1654(1998100)8:4<213::AID-RMV225>3.0.CO;2-W
Blainey, 2009, Nonspecifically bound proteins spin while diffusing along DNA, Nat. Struct. Mol. Biol., 16, 1224, 10.1038/nsmb.1716
Brandt, 1969, Infections in 18,000 infants and children in a controlled study of respiratory tract disease. I. Adenovirus pathogenicity in relation to serologic type and illness syndrome, Am. J. Epidemiol., 90, 484, 10.1093/oxfordjournals.aje.a121094
Mallet, 1966, Les pneumopathies graves a adeno-virus, Arch. Fr. Pediatr., 23, 1057
Kohoo, 1995, Adenovirus infections in human immunodeficiency virus-positive patients: Clinical features and molecular epidemiology, J. Infect. Dis., 172, 629, 10.1093/infdis/172.3.629
Mogabgab, 1968, Mycoplasma pneumonia and adenovirus respiratory illnesses in military and university personnel, Am. Rev. Respir. Dis., 97, 345
Gray, 1999, Respiratory diseases among U.S. military personnel: Countering emerging threats, Emerg. Infect. Dis., 5, 379, 10.3201/eid0503.990308
Atkinson, 2005, Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids, Int. J. Obes., 29, 281, 10.1038/sj.ijo.0802830
Centers for Disease Control and Prevention (CDC) (2007). Acute respiratory disease associated with adenovirus serotype 14—Four states, 2006–2007. MMWR, 56, 1181–1184.
Mangel, 2001, Prevention of viral drug resistance by novel combination therapy, Curr. Opin. Investig. Drugs, 2, 613
Mangel, 2001, A new form of antiviral combination therapy predicted to prevent resistance from arising, and a model system to test it, Curr. Med. Chem., 8, 933, 10.2174/0929867013372742
Korant, 2000, Adenovirus proteinase-antiviral target for triple-combination therapy on a single enzyme: Potential inhibitor-binding sites, Proteases as Targets for Therapy, Volume 140, 145, 10.1007/978-3-642-57092-6_8
Pang, 2001, Discovery of a new inhibitor lead of adenovirus proteinase: Steps toward selective, irreversible inhibitors of cysteine proteinases, FEBS Lett., 502, 93, 10.1016/S0014-5793(01)02672-2
McGrath, 2013, First generation inhibitors of the adenovirus proteinase, FEBS Lett., 587, 2332, 10.1016/j.febslet.2013.05.033
Veesler, 2012, Virus Maturation, Annu. Rev. Biophys., 41, 473, 10.1146/annurev-biophys-042910-155407
Johnson, 2010, Virus particle maturation: Insights into elegantly programmed nanomachines, Curr. Opin. Struct. Biol., 20, 210, 10.1016/j.sbi.2010.01.004
Silvestry, 2009, Cryo-electron microscopy structure of adenovirus type 2 temperature-sensitive mutant 1 reveals insight into the cell entry defect, J. Virol., 83, 7375, 10.1128/JVI.00331-09
Marabini, 2009, Structure and uncoating of immature adenovirus, J. Mol. Biol., 392, 547, 10.1016/j.jmb.2009.06.057
Snijder, 2014, The cleaved N-terminus of pVI binds peripentonal hexons in mature adenovirus, J. Mol. Biol., 426, 1971, 10.1016/j.jmb.2014.02.022
Hannan, 1983, Biological and structural studies with an adenovirus type 2 temperature-sensitive mutant defective for uncoating, Intervirology, 19, 213, 10.1159/000149363
Winkler, 2012, The role of capsid maturation on adenovirus priming for sequential uncoating, J. Biol. Chem., 287, 31582, 10.1074/jbc.M112.389957
Johnson, 2007, DNA packaging and delivery machines in tailed bacteriophages, Curr. Opin. Struct. Biol., 17, 237, 10.1016/j.sbi.2007.03.011
Hogle, 2002, Poliovirus cell entry: Common structural themes in viral cell entry pathways, Annu. Rev. Microbiol., 56, 677, 10.1146/annurev.micro.56.012302.160757
Ortega-Esteban, A., Pérez-Berná, A.J., Menéndez-Conejero, R., Flint, S.J., San Martín, C., and de Pablo, P.J. (2013). Monitoring dynamics of human adenovirus disassembly induced by mechanical fatigue. Sci. Rep., 3.
Nociari, 2007, Sensing infection by adenovirus: Toll-like receptor-independent viral DNA recognition signals activation of the interferon regulatory factor 3 master regulator, J. Virol., 81, 4145, 10.1128/JVI.02685-06
Gustin, 1996, Interaction of the adenovirus L1 52/55-kilodalton protein with the IVa2 gene product during infection, J. Virol., 70, 6463, 10.1128/jvi.70.9.6463-6467.1996
Rekosh, 1977, Identification of a protein linked to the ends of adenovirus DNA, Cell, 11, 283, 10.1016/0092-8674(77)90045-9
Stillman, 1981, Identification of the gene and mRNA for the adenovirus terminal protein precursor, Cell, 23, 497, 10.1016/0092-8674(81)90145-8
Doerfler, 2003, Adenovirus DNA replication, Adenoviruses: Model and Vectors in Virus Host Interactions. Current Topics in Microbiology and Immunology, Volume 272, 131
Khittoo, 1986, Role of the nuclear matrix in adenovirus maturation, Virus Res., 4, 391, 10.1016/0168-1702(86)90085-7
King, 1994, A precursor terminal protein-trinucleotide intermediate during initiation of adenovirus DNA replication: Regeneration of molecular ends in vitro by a jumping back mechanism, EMBO J., 13, 5786, 10.1002/j.1460-2075.1994.tb06917.x
Pronk, 1992, Adenovirus DNA replication: The function of the covalently bound terminal protein, Chromosoma, 102, S39, 10.1007/BF02451784
Kato, 2012, Reduced infectivity of adenovirus type 5 particles and degradation of entering viral genomes associated with incomplete processing of the preterminal protein, J. Virol., 86, 13554, 10.1128/JVI.02337-12