Structurally identified curcumin-Ag/ZnO nanocomposite having antibacterial effect: an investigation
Tóm tắt
Taking advantage of zinc oxide (ZnO), silver (Ag) and curcumin (Cur) properties, the Cur-Ag/ZnO nanocomposite (CNCs) are reported here. Electron spray ionization mass spectrometry (ESI–MS) confirmed the presence of curcumin mass fragments in the reported CNCs. Further, the existence of keto-enolic state of Cur in CNCs has been confirmed by NMR study. Photoluminescence (PL) and fluorescence microscopy techniques have evaluated the detailed fluorescence behavior of synthesized CNCs. The antibacterial activity of as fabricated CNCs was investigated against Staphylococcus aureus (S. aureus) bacteria. Incorporation of Ag/ZnO NPs into the Cur matrix reduced the minimum inhibitory concentration (MIC) from 0.62(Cur) to 0.31 mg/ml (Cur ZnAg2). These studies demonstrated that structurally explored CNCs, which can be used as antibacterial agent in different biomedical applications.
Tài liệu tham khảo
Goren, A.C., Cıkrıkc, S., Çergel, M., Bilsel, G.: Rapid quantification of curcumin in turmeric via NMR and LC-tandem mass spectrometry. Food Chem. 113, 1239–1242 (2009)
Huang, C., Wang, S., Yang, H.: Evaluation of thermal effects on the bioactivity of curcumin microencapsulated with porous starch-based wall material using spray drying. Processes 8, 172 (2020)
Priyadarsini, K.I.: Photophysics, photochemistry and photobiology of curcumin: studies from organic solutions, bio- mimetics and living cells. J. Photochem. Photobiol. C 10, 81–95 (2009)
Priyadarsini, K.: The chemistry of curcumin: from extraction to therapeutic agent. Molecules 19, 20091–20112 (2014)
Cooksey, C.: Turmeric: old spice, new spice. Biotech. Histochem. (2017). https://doi.org/10.1080/10520295.2017.1310924
Gupta, S.C., Patchva, S., Koh, W., Aggarwal, B.B.: Discovery of Curcumin, a component of golden spice, and its miraculous biological activities. Clin. Exp. Pharmacol. Physiol. 39, 283–299 (2012)
Gopi, S., Jacob, J., Varma, K., Jude, S., Amalraj, A., Arundhathy, C.A., George, R., Sreeraj, T.R., Divya, C., Kunnumakkara, A.B., Stohs, S.J.: Comparative oral absorption of curcumin in a natural turmeric matrix with two other curcumin formulations: an open-label parallel-arm study. Phytother. Res. (2017). https://doi.org/10.1002/ptr.5931
Gupta, S.C., Patchva, S., Aggarwal, B.B.: Therapeutic role of curcumin: lesson learned from clinical trials. AAPS 15(1), 195–218 (2015)
Tayyem, R.F., Heath, D.D., Al-Delaimy, W.K., Rock, C.L.: Curcumin content of turmeric and curry powders. Nutr. Cancer 55, 126–131 (2009)
Wichitnithad, W., Jongaroonngamsang, N., Pummangura, S., Rojsitthisak, P.: A Simple isocratic HPLC method for the simultaneous determination of curcuminoids in commercial turmeric extracts. Phytochem. Anal. 20, 314–319 (2009)
Shi, Y., Li, C., Liu, S., Liu, Z., Zhu, J., Yang, J., Hu, X.: Facile synthesis of fluorescent carbon dots for determination of curcumin based on fluorescence resonance energy transfer. RSC Adv. 5, 64790–64796 (2015)
Afkhami, A., Pirdadeh-beiranvand, M., Madrakian, T.: A method based on ultrasound-assisted solidification of floating drop microextraction technique for the spectrophotometric determination of curcumin in turmeric powder. Anal. Bioanal. Chem. Res. 4(1), 1–10 (2017)
Ziyatdinova, G.K., Nizamova, A.M., Budnikov, H.C.: Voltammetric determination of curcumin in spices. J. Anal. Chem. 67(6), 591–594 (2012)
Chan, W.H., Wu, H.Y., Chang, W.H.: Dosage effects of curcumin on cell death types in a human osteoblast cell line. Food Chem. Toxicol. 44, 1362–1371 (2006)
Muthulakshmi, L., Rajini, N., Nellaiah, H., Kathiresan, T., Jawaid, M., Varada, R.A.: Experimental investigation of cellulose/silver nanocomposites using in situ generation method. J. Polym. Environ. 25, 1021–1032 (2017)
Anagha, B.: Biomass derived antimicrobial hybrid cellulose hydrogel with green ZnO nanoparticles for curcumin delivery and its kinetic modelling. J. Polym. Environ. 27, 2054–2067 (2019)
Boucher, H.W., Corey, G.R.: Epidemiology of methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis. 46, S344–S349 (2008)
Klein, E., Smith, D.L., Laxminarayan, R.: Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States 1999–2005. Emerg. Infect. Dis. 13, 1840–1846 (2007)
Tong, S.Y.C., Davis, J.S., Eichenberge, E., Holland, T.L., Fowler, V.G.: Staphylococcus aureus infection: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28, 603–661 (2015)
Wang, Z.L.: Zinc oxide nanostructures: growth, properties, and applications. J. Phys. Condens. Matter. 16, R829 (2004)
Hahn, Y.B., Ahmad, R., Tripathy, N.: Chemical and biological sensors based on metal oxide nanostructures. Chem. Commun. 48, 10369–10385 (2012)
Xiong, H.M.: ZnO nanoparticles applied to bioimaging and drug delivery. Adv. Mater. 25(37), 5329–5335 (2013)
Li, Z., Meng, J., Wang, W., Wang, Z., Li, M., Chen, T., Liu, C.J.: The room temperature electron reduction for the preparation of silver nanoparticles on cotton with high antimicrobial activity. Carbohyd. Polym. 161, 270–276 (2017)
Xu, Q., Wu, Y., Zhang, Y., Fu, F., Liu, X.: Durable antibacterial cotton modified by silver nanoparticles and chitosan derivative binder. Fibers Polym. 17, 1782–1789 (2016)
Politano, A.D., Campbell, K.T., Rosenberger, L.H., Sawyer, R.G.: Use of silver in the prevention and treatment of infections: silver review. Surg. Infect. 14, 8 (2013)
Mirzaei, H., Darroudi, M.: Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram. Int. 43, 907–914 (2017)
Hameed, A.S.H., Karthikeyan, C., Ahamed, A.P., Thajuddin, N., Alharbi, N.S., Alharbi, S.A., Ravi, G.: In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumonia. Sci. Rep. 6, 24312 (2016)
Singh, H., Du, J., Yi, T.H.: Biosynthesis of silver nanoparticles using Aeromonas sp. THG-FG1.2 and its antibacterial activity against pathogenic microbes. Artif. Cells Nanomed. Biotechnol. 45(3), 584–590 (2017)
Chaisiwamongkhol, K., Nagamchuea, K., McAuley, C.B., Compton, R.G.: Multiwalled carbon nanotube modified electrodes for the adsorptive stripping voltammetric determination and quantification of curcumin in turmeric. Electroanalysis 29, 1–8 (2017)
Ansari, M.J., Ahmad, S., Kohli, K., Ali, J., Khar, R.K.: Stability-indicating HPTLC determination of curcumin in bulk drug and pharmaceutical formulations. J. Pharm. Biomed. Anal. 39, 132–138 (2005)
Lee, J.H., Choung, M.G.: Determination of curcuminoid coloring principles in commercial foods by HPLC. Food Chem. 124, 1217–1222 (2011)
Kunati, S.R., Yang, S., William, B.M., Xu, Y.: An LC-MS/MS method for simultaneous determination of curcumin, curcumin glucuronide and curcumin sulfate in a phase II clinical trial. J. Pharm. Biomed. Anal. 156, 189 (2018)
Nagargoje, A.A., Akolkar, S.V., Subhedar, D.D., Shaikh, M.H., Sangshetti, J.N., Khedkar, V.M., Shingate, B.B.: Propargylated monocarbonyl curcumin analogues: synthesis, bioevaluation and molecular docking study. Med. Chem. Res. 29, 1902–1913 (2020)
Mogharbel, B.F., Francisco, C., Carolina, A., Moreira, D.S., Ferreira, P.E., de Souza, D., Maria, C., de Souza, C.O., Neto, B., Cesar, L., Regina, C., Franco, C., Vataru, C., Kaplum, V., Mazzarino, L., Borsali, R., Soto, P.A., Setton, P., Abdelwahid, E., de, K.A.T.: Fluorescence properties of curcumin-loaded nanoparticles for cell tracking. Int. J. Nanomedicine 13, 5823–5836 (2018)
Kazantzis, K.T., Koutsonikoli, K., Mavroidi, B., Zachariadis, M., Alexiou, P., Pelecanou, M., Politopoulos, K., Alexandratou, E., Sagnou, M.: Curcumin derivatives as photosensitizers in photodynamic therapy: photophysical properties and in vitro studies with prostate cancer cells. Photochem. Photobiol. Sci. 19, 193–206 (2020)
Akbari, E., Akhavan, O., Hatamie, S., Rahighi, R.: Curcumin as a green fluorescent label to revive the fluorescence property of functionalized graphene oxide nanosheets. J. Drug Deliv. Sci. Technol. 45, 422 (2018)
Oves, M., Rauf Mohd, A., Ansari, M.O., Aslam Parwaz Khan, A., Qari, H.A., Alajmi, M.F., Sau, S., Iyer, A.K.: Graphene decorated zinc oxide and curcumin to disinfect the methicillin-resistant Staphylococcus aureus. Nanomaterials 10, 1004 (2020)
Karthikeyan, C., Varaprsad, K., Fakhrabadi, A.A., Hameed, A.S.H., Sadiku, R.: Biomolecule chitosan, curcumin and ZnO-based antibacterial nanomaterial, via a one-pot process. Carbohydr. Polym. 249, 116825 (2020)
Sayyar, Z., Jafarizadeh Malmiri, H.: Photocatalytic and antibacterial activities study of prepared self-cleaning nanostructure surfaces using synthesized and coated ZnO nanoparticles with Curcumin nanodispersion. Z. Für Krist. Cryst. Mater. 234, 307 (2019)
El-nahhal, M.I., Salem, J., Anbar, R., Kodeh fawzi, S., Elmanama, A.: Preparation and antimicrobial activity of Zno-nps coated cotton/starch and their functionalized Zno-Ag/cotton and Zn(ii) curcumin/cotton materials. Sci. Rep. 10, 5410 (2020)
Singh, R., Verma, K., Kumar, R.: Core–shell Ag-ZnO/curcumin nanocomposite having optically active, thermally stable, hydrophilic surfaces for self-cleaning applications. Appl. Phys. A 126, 937 (2020)
Bouazza, A., Bassaid, S., Daho, B., Messori, M., Dehbi, A.: Synthesis and characterization of a composite organic semiconductor (curcumin-paracetamol/TiO2). Polym. Polym. Compos 29, 417–426 (2021)
Dewan, P.C., Anantharaman, A., Chauhan, V.S., Sahal, D.: Antimicrobial action of prototypic amphipathic cationic decapeptides and their branched dimers. Biochemistry 48, 5642–5657 (2009)
Verma, M.K., Najar, I.K., Tikko, M.K., Singh, G., Gupta, D.K., Anand, R., Khajuria, R.K., Sharma, S.C., Johri, R.K.: Development of a validated UPLC-qTOF-MS Method for the determination of curcuminoids and their pharmacokinetic study in mice DARU. J. Pharm. Sci. 21, 11 (2013)
Lestari, M.L.A.D., Indirayanto, G.: Curcumin. Profile Drug Subst. Excip. Relat. Methodol. 39, 113–204 (2014)
Benassi, R., Ferrari, E., Lazzari, S., Spagnolo, F., Saladini, M.: Theoretical study on curcumin: a comparison of calculated spectroscopic properties with NMR, UV–Vis and IR experimental data. J. Mol. Struct. 892, 168–176 (2008)
Shen, L., Ji, H.F.: Theoretical study on physicochemical properties of curcumin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 67, 619–623 (2007)
Payton, F., Sandusky, P., Alworth, W.L.: NMR study of the solution structure of curcumin. J. Nat. Prod. 70, 143–146 (2007)
Jiang, T., Wang, L., Zhang, S., Sun, P.C., Ding, C.F., Chu, Y.Q., Zhou, P.: Interaction of curcumin with Al(III) and its complex structures based on experiments and theoretical calculations. J. Mol. Struct. 1004, 163–173 (2011)
Sharma, K., Kumar, P., Verma, G.: Role of shell type of core/shell nanoparticles in luminescence properties of PVK– CdS/X nanocomposite films. Appl. Phys. A. 125, 351 (2019)
Patra, D., Barakat, C., Tafech, R.M.: Study on effect of lipophilic curcumin on sub-domain IIA site of human serum albumin during unfolded and refolded states: a synchronous fluorescence spectroscopic study. Colloids Surf. B 94, 354–361 (2012)
Xiong, H.M.: Photoluminescent ZnO nanoparticles modified by polymers. J. Mater. Chem. 20, 4251–4262 (2010)
Zhang, J., Liu, H., Wang, Z., Ming, N., Li, Z., Biris, A.S.: Polyvinylpyrrolidone-directed crystallization of ZnO with tunable morphology and bandgap. Adv. Funct. Mater. 17, 3897–3905 (2007)
Hu, Q., Gao, L., Rao, S., Yang, Z.Q., Li, T., Gong, X.: Nitrogen and chlorine dual-doped carbon nanodots for determination of curcumin in food matrix via inner filter effect. Food Chem. 280, 195–202 (2019)
Tyagi, P., Singh, M., Kumari, H., Kumari, A., Mukhopadhyay, K.: Bactericidal activity of curcumin i is associated with damaging of bacterial membrane. PLoS ONE (2015). https://doi.org/10.1371/journal.pone.0121313
Mun, S.H., Joung, D.K., Kim, Y.S., Kang, O.H., Kim, S.B., Seo, Y.S., Kim, Y.C., Lee, D.S., Shin, D.W., Kweon, K.T., Kwon, D.Y.: Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine 20, 714–718 (2013)
Bhutta, Z.A., Ashar, A., Khan, J.A., Saleenm, M.I., Rashid, A., Aquib, A.I., Kulyar, M.F.A., Sarwar, I., Shoiab, M., Nawaz, S., Yai, W.: Enhanced wound healing activity of nano ZnO and nano Curcuma longa in third-degree burn. Appl. Nanosci. 11, 1267–1278 (2021)
Perera, W.P.T.D., Dissanayake, R.K., Ranatunga, U.I., Hettiarachi, N.M., Perera, K.D.C., Unagolla, J.M., Silva, R.T.D., Pahaladara, L.R.: Curcumin loaded zinc oxide nanoparticles for activity-enhanced antibacterial and anticancer applications. RSC Adv. 10, 30785–30795 (2020)