Structural variation and eQTL analysis in two experimental populations of chickens divergently selected for feather-pecking behavior

Neurogenetics - Tập 24 - Trang 29-41 - 2022
Clemens Falker-Gieske1, Jörn Bennewitz2, Jens Tetens1,3
1Department of Animal Sciences, Georg-August-University, Göttingen, Germany
2Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
3Center for Integrated Breeding Research, Georg-August-University, Göttingen, Germany

Tóm tắt

Feather pecking (FP) is a damaging nonaggressive behavior in laying hens with a heritable component. Its occurrence has been linked to the immune system, the circadian clock, and foraging behavior. Furthermore, dysregulation of miRNA biogenesis, disturbance of the gamma-aminobutyric acid (GABAergic) system, as well as neurodevelopmental deficiencies are currently under debate as factors influencing the propensity for FP behavior. Past studies, which focused on the dissection of the genetic factors involved in FP, relied on single nucleotide polymorphisms (SNPs) and short insertions and deletions < 50 bp (InDels). These variant classes only represent a certain fraction of the genetic variation of an organism. Hence, we reanalyzed whole-genome sequencing data from two experimental populations, which have been divergently selected for FP behavior for over more than 15 generations, performed variant calling for structural variants (SVs) as well as tandem repeats (TRs), and jointly analyzed the data with SNPs and InDels. Genotype imputation and subsequent genome-wide association studies, in combination with expression quantitative trait loci analysis, led to the discovery of multiple variants influencing the GABAergic system. These include a significantly associated TR downstream of the GABA receptor subunit beta-3 (GABRB3) gene, two microRNAs targeting several GABA receptor genes, and dystrophin (DMD), a direct regulator of GABA receptor clustering. Furthermore, we found the transcription factor ETV1 to be associated with the differential expression of 23 genes, which points toward a role of ETV1, together with SMAD4 and KLF14, in the disturbed neurodevelopment of high-feather pecking chickens.

Tài liệu tham khảo

Falker-Gieske C, Mott A, Preuß S et al (2020) Analysis of the brain transcriptome in lines of laying hens divergently selected for feather pecking. BMC Genomics 21. https://doi.org/10.1186/s12864-020-07002-1 Falker-Gieske C, Iffland H, Preuß S et al (2020) Meta-analyses of genome wide association studies in lines of laying hens divergently selected for feather pecking using imputed sequence level genotypes. BMC Genet 21. https://doi.org/10.1186/s12863-020-00920-9 Brunberg E, Jensen P, Isaksson A et al (2011) Feather pecking behavior in laying hens: hypothalamic gene expression in birds performing and receiving pecks. Poult Sci 90:1145–1152. https://doi.org/10.3382/ps.2010-00961 Nicol CJ, Bestman M, Gilani A-M et al (2013) The prevention and control of feather pecking: application to commercial systems. World’s Poult Sci J 69:775–788. https://doi.org/10.1017/S0043933913000809 Rodenburg TB, van Krimpen MM, de Jong IC et al (2013) The prevention and control of feather pecking in laying hens: identifying the underlying principles. World’s Poult Sci J 69:361–374. https://doi.org/10.1017/S0043933913000354 Parmentier HK, Rodenburg TB, de Vries Reilingh G et al (2009) Does enhancement of specific immune responses predispose laying hens for feather pecking? Poult Sci 88:536–542. https://doi.org/10.3382/ps.2008-00424 van der Eijk JAJ, Verwoolde MB, de Vries Reilingh G et al (2019) Chicken lines divergently selected on feather pecking differ in immune characteristics. Physiol Behav 212:112680. https://doi.org/10.1016/j.physbeh.2019.112680 Mott AC, Mott A, Preuß S et al (2022) eQTL analysis of laying hens divergently selected for feather pecking identifies KLF14 as a potential key regulator for this behavioral disorder. Front Genet 13. https://doi.org/10.3389/fgene.2022.969752 van der Eijk JAJ, de Vries H, Kjaer JB et al (2019) Differences in gut microbiota composition of laying hen lines divergently selected on feather pecking. Poult Sci 98:7009–7021. https://doi.org/10.3382/ps/pez336 Borda-Molina D, Iffland H, Schmid M et al (2021) Gut microbial composition and predicted functions are not associated with feather pecking and antagonistic behavior in laying hens. Life (Basel) 11. https://doi.org/10.3390/life11030235 Wysocki M, Bessei W, Kjaer JB et al (2010) Genetic and physiological factors influencing feather pecking in chickens. World’s Poult Sci J 66:659–672. https://doi.org/10.1017/S0043933910000644 Bennewitz J, Tetens J (2021) Feather pecking behavior in the Hohenheim selection lines of laying hens – a selective review of genomic, transcriptomic and gut microbiota analyses. Züchtungskunde 93:229–243 Iffland H, Wellmann R, Preuß S et al (2020) A novel model to explain extreme feather pecking behavior in laying hens. Behav Genet 50:41–50. https://doi.org/10.1007/s10519-019-09971-w Falker-Gieske C, Bennewitz J, Tetens J (2021) The light response in chickens divergently selected for feather pecking behavior reveals mechanistic insights towards psychiatric disorders. Mol Biol Rep. https://doi.org/10.1007/s11033-021-07111-4 Rey R, Suaud-Chagny M-F, Dorey J-M et al (2020) Widespread transcriptional disruption of the microRNA biogenesis machinery in brain and peripheral tissues of individuals with schizophrenia. Transl Psychiatry 10. https://doi.org/10.1038/s41398-020-01052-5 Pasciuto E, Burton OT, Roca CP et al (2020) Microglia require CD4 T cells to complete the fetal-to-adult transition. Cell 182:625-640.e24. https://doi.org/10.1016/j.cell.2020.06.026 Mulle JG (2008) Genomic structural variation and schizophrenia. Curr Psychiatry Rep 10:171–177. https://doi.org/10.1007/s11920-008-0029-y Rucker JJH, McGuffin P (2012) Genomic structural variation in psychiatric disorders. Dev Psychopathol 24:1335–1344. https://doi.org/10.1017/S0954579412000740 Sullivan PF, Geschwind DH (2019) Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders. Cell 177:162–183. https://doi.org/10.1016/j.cell.2019.01.015 Xiao X, Zhang C-Y, Zhang Z et al (2021) Revisiting tandem repeats in psychiatric disorders from perspectives of genetics, physiology, and brain evolution. Mol Psychiatry. https://doi.org/10.1038/s41380-021-01329-1 Ho SS, Urban AE, Mills RE (2020) Structural variation in the sequencing era. Nat Rev Genet 21:171–189. https://doi.org/10.1038/s41576-019-0180-9 Grams V, Wellmann R, Preuß S et al (2015) Genetic parameters and signatures of selection in two divergent laying hen lines selected for feather pecking behaviour. Genet Sel Evol 47:77. https://doi.org/10.1186/s12711-015-0154-0 Kjaer JB, Sørensen P, Su G (2001) Divergent selection on feather pecking behaviour in laying hens (Gallus gallus domesticus). Appl Anim Behav Sci 71:229–239. https://doi.org/10.1016/s0168-1591(00)00184-2 Bennewitz J, Bögelein S, Stratz P et al (2014) Genetic parameters for feather pecking and aggressive behavior in a large F2-cross of laying hens using generalized linear mixed models. Poult Sci 93:810–817. https://doi.org/10.3382/ps.2013-03638 McKenna A, Hanna M, Banks E et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. https://doi.org/10.1101/gr.107524.110 Blaj I, Tetens J, Bennewitz J et al (2022) Structural variants and tandem repeats in the founder individuals of four F2 pig crosses and implications to F2 GWAS results. BMC Genomics 23. https://doi.org/10.1186/s12864-022-08716-0 Rausch T, Zichner T, Schlattl A et al (2012) DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28:i333–i339. https://doi.org/10.1093/bioinformatics/bts378 Chen X, Schulz-Trieglaff O, Shaw R et al (2016) Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32:1220–1222. https://doi.org/10.1093/bioinformatics/btv710 Jeffares DC, Jolly C, Hoti M et al (2017) Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat Commun 8:14061. https://doi.org/10.1038/ncomms14061 Mousavi N, Shleizer-Burko S, Yanicky R et al (2019) Profiling the genome-wide landscape of tandem repeat expansions. Nucleic Acids Res 47:e90. https://doi.org/10.1093/nar/gkz501 Browning BL, Zhou Y, Browning SR (2018) A one-penny imputed genome from next-generation reference panels. Am J Hum Genet 103:338–348. https://doi.org/10.1016/j.ajhg.2018.07.015 Danecek P, Bonfield JK, Liddle J et al (2021) Twelve years of SAMtools and BCFtools. Gigascience 10. https://doi.org/10.1093/gigascience/giab008 Yang J, Lee SH, Goddard ME et al (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82. https://doi.org/10.1016/j.ajhg.2010.11.011 Falker-Gieske C, Blaj I, Preuß S et al (2019) GWAS for meat and carcass traits using imputed sequence level genotypes in pooled F2-designs in pigs. G3 (Bethesda) 9:2823–2834. https://doi.org/10.1534/g3.119.400452 Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26:2190–2191. https://doi.org/10.1093/bioinformatics/btq340 Shim H, Chasman DI, Smith JD et al (2015) A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians. PLoS One 10:e0120758. https://doi.org/10.1371/journal.pone.0120758 Reverter A, Fortes MRS (2013) Association weight matrix: a network-based approach towards functional genome-wide association studies. Methods Mol Biol 1019:437–447. https://doi.org/10.1007/978-1-62703-447-0_20 Reverter A, Chan EKF (2008) Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. Bioinformatics 24:2491–2497. https://doi.org/10.1093/bioinformatics/btn482 Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303 Mi H, Huang X, Muruganujan A et al (2017) PANTHER version 11: expanded annotation data from gene ontology and reactome pathways, and data analysis tool enhancements. Nucleic Acids Res 45:D183–D189. https://doi.org/10.1093/nar/gkw1138 (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49:D480-D489. https://doi.org/10.1093/nar/gkaa1100 Gearing LJ, Cumming HE, Chapman R et al (2019) CiiiDER: a tool for predicting and analysing transcription factor binding sites. PLoS One 14:e0215495. https://doi.org/10.1371/journal.pone.0215495 Pook T, Mayer M, Geibel J et al (2020) Improving imputation quality in BEAGLE for Crop and Livestock Data. G3 (Bethesda) 10:177–188. https://doi.org/10.1534/g3.119.400798 Rodenburg TB, Buitenhuis AJ, Ask B et al (2003) Heritability of feather pecking and open-field response of laying hens at two different ages. Poult Sci 82:861–867. https://doi.org/10.1093/ps/82.6.861 Kjaer JB, Sørensen P (1997) Feather pecking behaviour in White Leghorns, a genetic study. Br Poult Sci 38:333–341. https://doi.org/10.1080/00071669708417999 Wysocki M, Preuss S, Stratz P et al (2013) Investigating gene expression differences in two chicken groups with variable propensity to feather pecking. Anim Genet 44:773–777. https://doi.org/10.1111/age.12050 Williams SE, Mealer RG, Scolnick EM et al (2020) Aberrant glycosylation in schizophrenia: a review of 25 years of post-mortem brain studies. Mol Psychiatry 25:3198–3207. https://doi.org/10.1038/s41380-020-0761-1 Sulistomo HW, Nemoto T, Kage Y et al (2021) Fhod3 controls the dendritic spine morphology of specific subpopulations of pyramidal neurons in the mouse cerebral cortex. Cereb Cortex 31:2205–2219. https://doi.org/10.1093/cercor/bhaa355 Lu G, Ma L, Xu P et al (2022) A de novo ZMIZ1 pathogenic variant for neurodevelopmental disorder with dysmorphic facies and distal skeletal anomalies. Front Genet 13:840577. https://doi.org/10.3389/fgene.2022.840577 Moore JM, Oliver PL, Finelli MJ et al (2014) Laf4/Aff3, a gene involved in intellectual disability, is required for cellular migration in the mouse cerebral cortex. PLoS One 9:e105933. https://doi.org/10.1371/journal.pone.0105933 Voisin N, Schnur RE, Douzgou S et al (2021) Variants in the degron of AFF3 are associated with intellectual disability, mesomelic dysplasia, horseshoe kidney, and epileptic encephalopathy. Am J Hum Genet 108:857–873. https://doi.org/10.1016/j.ajhg.2021.04.001 Ranade SS, Woo S-H, Dubin AE et al (2014) Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 516:121–125. https://doi.org/10.1038/nature13980 Shi H, Li B, Tong Q et al (2019) Effects of LED light color and intensity on feather pecking and fear responses of layer breeders in natural mating colony cages. Animals (Basel) 9. https://doi.org/10.3390/ani9100814 Xu S (2003) Theoretical basis of the Beavis effect. Genetics 165:2259–2268. https://doi.org/10.1093/genetics/165.4.2259 Knuesel I, Mastrocola M, Zuellig RA et al (1999) Short communication: altered synaptic clustering of GABAA receptors in mice lacking dystrophin (mdx mice). Eur J Neurosci 11:4457–4462. https://doi.org/10.1046/j.1460-9568.1999.00887.x Earls LR, Hacker ML, Watson JD et al (2010) Coenzyme Q protects Caenorhabditis elegans GABA neurons from calcium-dependent degeneration. Proc Natl Acad Sci 107:14460–14465. https://doi.org/10.1073/pnas.0910630107 Abe H, Okazawa M, Nakanishi S (2011) The Etv1/Er81 transcription factor orchestrates activity-dependent gene regulation in the terminal maturation program of cerebellar granule cells. Proc Natl Acad Sci 108:12497–12502. https://doi.org/10.1073/pnas.1109940108 Woo R-S, Li X-M, Tao Y et al (2007) Neuregulin-1 enhances depolarization-induced GABA release. Neuron 54:599–610. https://doi.org/10.1016/j.neuron.2007.04.009 Ayka A, Şehirli AÖ (2020) The role of the SLC transporters protein in the neurodegenerative disorders. Clin Psychopharmacol Neurosci 18:174–187. https://doi.org/10.9758/cpn.2020.18.2.174 Chen P, Huang K, Zhou G et al (2011) Common SNPs in CSF2RB are associated with major depression and schizophrenia in the Chinese Han population. World J Biol Psychiatry 12:233–238. https://doi.org/10.3109/15622975.2010.544328 Gerges P, Bitar T, Laumonnier F et al (2022) Identification of novel gene variants for autism spectrum disorders in the Lebanese population using whole-exome sequencing. Genes 13:186. https://doi.org/10.3390/genes13020186 Kiaii S, Clear AJ, Ramsay AG et al (2013) Follicular lymphoma cells induce changes in T-cell gene expression and function: potential impact on survival and risk of transformation. J Clin Oncol 31:2654–2661. https://doi.org/10.1200/JCO.2012.44.2137 Oh S, Shin S, Song H et al (2019) Relationship between ETS transcription factor ETV1 and TGF-β-regulated SMAD proteins in prostate cancer. Sci Rep 9:8186. https://doi.org/10.1038/s41598-019-44685-3 Bonett RM, Hu F, Bagamasbad P et al (2009) Stressor and glucocorticoid-dependent induction of the immediate early gene kruppel-like factor 9: implications for neural development and plasticity. Endocrinology 150:1757–1765. https://doi.org/10.1210/en.2008-1441 Qin S, Liu M, Niu W et al (2011) Dysregulation of Kruppel-like factor 4 during brain development leads to hydrocephalus in mice. Proc Natl Acad Sci 108:21117–21121. https://doi.org/10.1073/pnas.1112351109 Qin S, Zhang C-L (2012) Role of Kruppel-like factor 4 in neurogenesis and radial neuronal migration in the developing cerebral cortex. Mol Cell Biol 32:4297–4305. https://doi.org/10.1128/MCB.00838-12 Besnard A, Langberg T, Levinson S et al (2018) Targeting Kruppel-like factor 9 in excitatory neurons protects against chronic stress-induced impairments in dendritic spines and fear responses. Cell Rep 23:3183–3196. https://doi.org/10.1016/j.celrep.2018.05.040 Ávila-Mendoza J, Subramani A, Denver RJ (2020) Krüppel-like factors 9 and 13 block axon growth by transcriptional repression of key components of the cAMP signaling pathway. Front Mol Neurosci 13:602638. https://doi.org/10.3389/fnmol.2020.602638 Antin PB, Pier M, Sesepasara T et al (2010) Embryonic expression of the chicken Krüppel-like (KLF) transcription factor gene family. Dev Dyn 239:1879–1887. https://doi.org/10.1002/dvdy.22318 Konopaske GT, Subburaju S, Coyle JT et al (2015) Altered prefrontal cortical MARCKS and PPP1R9A mRNA expression in schizophrenia and bipolar disorder. Schizophr Res 164:100–108. https://doi.org/10.1016/j.schres.2015.02.005 Kim SS, Wang H, Li X-Y et al (2011) Neurabin in the anterior cingulate cortex regulates anxiety-like behavior in adult mice. Mol Brain 4:6. https://doi.org/10.1186/1756-6606-4-6 Banihashemi S, Tahmasebi-Birgani M, Mohammadiasl J et al (2020) Whole exome sequencing identified a novel nonsense INPP4A mutation in a family with intellectual disability. Eur J Med Genet 63:103846. https://doi.org/10.1016/j.ejmg.2020.103846 Wang L, Luo J, Fang M et al (2012) A new trick of INPP4A: decreased expression of INPP4A in patients with temporal lobe epilepsy and pilocarpine-induced rat model. Synapse 66:533–541. https://doi.org/10.1002/syn.21540 John J, Kukshal P, Bhatia T et al (2019) Oligogenic rare variant contributions in schizophrenia and their convergence with genes harbouring de novo mutations in schizophrenia, autism and intellectual disability: evidence from multiplex families 1 Chapman RM, Tinsley CL, Hill MJ et al (2019) Convergent evidence that ZNF804A is a regulator of pre-messenger RNA processing and gene expression. Schizophr Bull 45:1267–1278. https://doi.org/10.1093/schbul/sby183 Leone M, Cazorla-Vázquez S, Ferrazzi F et al (2021) IQGAP3, a YAP target, is required for proper cell-cycle progression and genome stability. Mol Cancer Res 19:1712–1726. https://doi.org/10.1158/1541-7786.MCR-20-0639 Yuan Y, Jiang X, Tang L et al (2022) Comprehensive analyses of the immunological and prognostic roles of an IQGAP3AR/let-7c-5p/IQGAP3 axis in different types of human cancer. Front Mol Biosci 9:763248. https://doi.org/10.3389/fmolb.2022.763248 Hung T, Pratt GA, Sundararaman B et al (2015) The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science 350:455–459. https://doi.org/10.1126/science.aac7442 Zhang Y, Yang X, Zhu X-L et al (2021) S100A gene family: immune-related prognostic biomarkers and therapeutic targets for low-grade glioma. Aging (Albany NY) 13:15459–15478. https://doi.org/10.18632/aging.203103 Gandal MJ, Zhang P, Hadjimichael E et al (2018) Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362. https://doi.org/10.1126/science.aat8127 Walton E, Cecil CAM, Suderman M et al (2017) Longitudinal epigenetic predictors of amygdala:hippocampus volume ratio. J Child Psychol Psychiatry 58:1341–1350. https://doi.org/10.1111/jcpp.12740 Blokhin IO, Khorkova O, Saveanu RV et al (2020) Molecular mechanisms of psychiatric diseases. Neurobiol Dis 146:105136. https://doi.org/10.1016/j.nbd.2020.105136 Johnsson M, Williams MJ, Jensen P et al (2016) Genetical genomics of behavior: a novel chicken genomic model for anxiety behavior. Genetics 202:327–340. https://doi.org/10.1534/genetics.115.179010 Chan JZ, Fernandes MF, Hashemi A et al (2021) Age-associated increase in anxiety-like behavior in Lpaatδ/Agpat4 knockout mice. Curr Res Behav Sci 2:100042. https://doi.org/10.1016/j.crbeha.2021.100042 Hori H, Sasayama D, Teraishi T et al (2016) Blood-based gene expression signatures of medication-free outpatients with major depressive disorder: integrative genome-wide and candidate gene analyses. Sci Rep 6:18776. https://doi.org/10.1038/srep18776 Guffanti G, Strik Lievers L, Bonati MT et al (2011) Role of UBE3A and ATP10A genes in autism susceptibility region 15q11-q13 in an Italian population: a positive replication for UBE3A. Psychiatry Res 185:33–38. https://doi.org/10.1016/j.psychres.2010.04.057 Seigneur E, Wang J, Dai J et al (2021) Cerebellin-2 regulates a serotonergic dorsal raphe circuit that controls compulsive behaviors. Mol Psychiatry. https://doi.org/10.1038/s41380-021-01187-x Li X, Wang Q, He K et al (2014) Common variants in the CDH7 gene are associated with major depressive disorder in the Han Chinese population. Behav Genet 44:97–101. https://doi.org/10.1007/s10519-014-9645-y Huang Y, Zhu Y, He W et al (2021) Altered expression of DENND5B in patients with epilepsy and its regulation of seizures in mice. Epilepsy Res 178:106817. https://doi.org/10.1016/j.eplepsyres.2021.106817 Pei Y-F, Zhang L, Yang T-L et al (2012) Genome-wide association study of copy number variants suggests LTBP1 and FGD4 are important for alcohol drinking. PLoS One 7:e30860. https://doi.org/10.1371/journal.pone.0030860 Chiapponi C, Piras F, Piras F et al (2016) GABA system in schizophrenia and mood disorders: a mini review on third-generation imaging studies. Front Psychiatry 7:61. https://doi.org/10.3389/fpsyt.2016.00061 Werner CT, Mitra S, Martin JA et al (2019) Ubiquitin-proteasomal regulation of chromatin remodeler INO80 in the nucleus accumbens mediates persistent cocaine craving. Sci Adv 5:eaay0351. https://doi.org/10.1126/sciadv.aay0351 Iwamoto K, Kakiuchi C, Bundo M et al (2004) Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders. Mol Psychiatry 9:406–416. https://doi.org/10.1038/sj.mp.4001437 Alblooshi H, Al Safar H, El Kashef A et al (2020) Stratified analyses of genome wide association study data reveal haplotypes for a candidate gene on chromosome 2 (KIAA1211L) is associated with opioid use in patients of Arabian descent. BMC Psychiatry 20:41. https://doi.org/10.1186/s12888-019-2425-8 Schubert Baldo M, Vilarinho L (2020) Molecular basis of Leigh syndrome: a current look. Orphanet J Rare Dis 15:31. https://doi.org/10.1186/s13023-020-1297-9 Tang L, Xiang Q, Xiang J et al (2021) A variant in the 3′-untranslated region of the MC2R gene decreases the risk of schizophrenia in a female Han Chinese population. J Int Med Res 49:3000605211029504. https://doi.org/10.1177/03000605211029504 Kippe JM, Mueller TM, Haroutunian V et al (2015) Abnormal N-acetylglucosaminyltransferase expression in prefrontal cortex in schizophrenia. Schizophr Res 166:219–224. https://doi.org/10.1016/j.schres.2015.06.002 Fang C-P, Liu T-H, Chung R-H et al (2020) Genetic variants in NECTIN4 encoding an adhesion molecule are associated with continued opioid use. PLoS One 15:e0234549. https://doi.org/10.1371/journal.pone.0234549 Ng D, Pitcher GM, Szilard RK et al (2009) Neto1 is a novel CUB-domain NMDA receptor-interacting protein required for synaptic plasticity and learning. PLoS Biol 7:e41. https://doi.org/10.1371/journal.pbio.1000041 Tropeano M, Howley D, Gazzellone MJ et al (2016) Microduplications at the pseudoautosomal SHOX locus in autism spectrum disorders and related neurodevelopmental conditions. J Med Genet 53:536–547. https://doi.org/10.1136/jmedgenet-2015-103621 Frydecka D, Misiak B, Pawlak-Adamska E et al (2015) Sex differences in TGFB-β signaling with respect to age of onset and cognitive functioning in schizophrenia. Neuropsychiatr Dis Treat 11:575–584. https://doi.org/10.2147/NDT.S74672 Warnica W, Merico D, Costain G et al (2015) Copy number variable microRNAs in schizophrenia and their neurodevelopmental gene targets. Biol Psychiatry 77:158–166. https://doi.org/10.1016/j.biopsych.2014.05.011 Vatsa N, Jana NR (2018) UBE3A and its link with autism. Front Mol Neurosci 11:448. https://doi.org/10.3389/fnmol.2018.00448 Gamazon ER, Badner JA, Cheng L et al (2013) Enrichment of cis-regulatory gene expression SNPs and methylation quantitative trait loci among bipolar disorder susceptibility variants. Mol Psychiatry 18:340–346. https://doi.org/10.1038/mp.2011.174 Fitzgerald J, Kennedy D, Viseshakul N et al (2000) UNCL, the mammalian homologue of UNC-50, is an inner nuclear membrane RNA-binding protein11Published on the world wide web on 10 August 2000. Brain Res 877:110–123. https://doi.org/10.1016/S0006-8993(00)02692-5