Structural shape optimization of three dimensional acoustic problems with isogeometric boundary element methods
Tài liệu tham khảo
Bordas, 2010, Alleviating the mesh burden in computational solid mechanics, Proc. ECT2010
Greengard, 1987, A fast algorithm for particle simulations, J. Comput. Phys., 73, 325, 10.1016/0021-9991(87)90140-9
Zheng, 2019, Fictitious eigenfrequencies in the BEM for interior acoustic problems, Eng. Anal. Bound. Elem., 104, 170, 10.1016/j.enganabound.2019.03.042
Beylkin, 1991, Fast wavelet transforms and numerical algorithms I, Comm. Pure Appl. Math., 44, 141, 10.1002/cpa.3160440202
Phillips, 1997, A precorrected-FFT method for electrostatic analysis of complicated 3-D structures, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 16, 1059, 10.1109/43.662670
Bebendorf, 2000, Approximation of boundary element matrices, Numer. Math., 86, 565, 10.1007/PL00005410
Perrey-Debain, 2003, Plane wave interpolation in direct collocation boundary element method for radiation and wave scattering: numerical aspects and applications, J. Sound Vib., 261, 839, 10.1016/S0022-460X(02)01006-4
Bériot, 2010, Plane wave basis in Galerkin BEM for bidimensional wave scattering, Eng. Anal. Bound. Elem., 34, 130, 10.1016/j.enganabound.2009.07.014
Peake, 2013, Novel basis functions for the partition of unity boundary element method for Helmholtz problems, Internat. J. Numer. Methods Engrg., 93, 905, 10.1002/nme.4411
Fischer, 2005, Fast BEM–FEM mortar coupling for acoustic–structure interaction, Internat. J. Numer. Methods Engrg., 62, 1677, 10.1002/nme.1242
Zhao, 2019, Topology optimization of exterior acoustic-structure interaction systems using the coupled FEM-BEM method, Internat. J. Numer. Methods Engrg., 82, 858
Chen, 2014, FEM/wideband FMBEM coupling for structural-acoustic design sensitivity analysis, Comput. Methods Appl. Mech. Engrg., 276, 1, 10.1016/j.cma.2014.03.016
Chen, 2016, Structural–acoustic sensitivity analysis of radiated sound power using a finite element/ discontinuous fast multipole boundary element scheme, Int. J. Numer. Methods Fluids, 82, 858, 10.1002/fld.4244
Chen, 2017, An adjoint operator approach for sensitivity analysis of radiated sound power in fully coupled structural-acoustic systems, J. Comput. Acoust., 25, 1750003, 10.1142/S0218396X17500035
Natarajan, 2017, A scaled boundary finite element formulation over arbitrary faceted star convex polyhedra, Eng. Anal. Bound. Elem., 80, 218, 10.1016/j.enganabound.2017.03.007
C. Marot, J. Pellerin, J.-F. Remacle, One machine, one minute, three billion tetrahedra, arXiv preprint arXiv:1805.08831, 2018.
Christiansen, 2014, Topology optimization using an explicit interface representation, Struct. Multidiscip. Optim., 49, 387, 10.1007/s00158-013-0983-9
Christiansen, 2015, Combined shape and topology optimization of 3D structures, Comput. Graph., 46, 25, 10.1016/j.cag.2014.09.021
Lian, 2017, Combined shape and topology optimization for minimization of maximal von Mises stress, Struct. Multidiscip. Optim., 55, 1541, 10.1007/s00158-017-1656-x
Zhou, 2018, Shape morphing and topology optimization of fluid channels by explicit boundary tracking, Internat. J. Numer. Methods Fluids, 88, 296, 10.1002/fld.4667
Wang, 2003, A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., 192, 227, 10.1016/S0045-7825(02)00559-5
Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008
Cottrell, 2006, Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 5257, 10.1016/j.cma.2005.09.027
Benson, 2010, Isogeometric shell analysis: The Reissner-Mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 276, 10.1016/j.cma.2009.05.011
Bazilevs, 2010, Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes, Comput. Methods Appl. Mech. Engrg., 199, 780, 10.1016/j.cma.2008.11.020
Bazilevs, 2008, Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput. Mech., 43, 3, 10.1007/s00466-008-0315-x
De Lorenzis, 2011, A large deformation frictional contact formulation using NURBS-based isogeometric analysis, Internat. J. Numer. Methods Engrg., 10.1002/nme.3159
Nguyen, 2014, Nitsche’s method for two and three dimensional NURBS patch coupling, Comput. Mech., 53, 1163, 10.1007/s00466-013-0955-3
T. Khajah, X. Antoine, S. Bordas, Isogeometric finite element analysis of time-harmonic exterior acoustic scattering problems, arXiv preprint arXiv:1610.01694, 2016.
Bazilevs, 2010, Isogeometric analysis using T-splines, Comput. Math. Appl., 199, 229
Nguyen-Thanh, 2011, Rotation free isogeometric thin shell analysis using PHT-splines, Comput. Methods Appl. Mech. Engrg., 200, 3410, 10.1016/j.cma.2011.08.014
Cirak, 2002, Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision, Comput. Aided Des., 34, 137, 10.1016/S0010-4485(01)00061-6
Scott, 2011, Isogeometric finite element data structures based on Bézier extraction of T-splines, Internat. J. Numer. Methods Engrg., 88, 126, 10.1002/nme.3167
Nguyen, 2015, Isogeometric analysis: an overview and computer implementation aspects, Math. Comput. Simulation, 117, 89, 10.1016/j.matcom.2015.05.008
Xu, 2013, Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method, J. Comput. Phys., 252, 275, 10.1016/j.jcp.2013.06.029
Xu, 2013, Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis, Comput. Aided Des., 45, 812, 10.1016/j.cad.2011.05.007
Politis, 2009, An isogeometric BEM for exterior potential-flow problems in the plane
Simpson, 2012, A two-dimensional isogeometric boundary element method for elastostatic analysis, Comp. Methods Appl. Mech. Eng., 209–212, 87, 10.1016/j.cma.2011.08.008
Simpson, 2013, An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects, Comput. Struct., 118, 2, 10.1016/j.compstruc.2012.12.021
Scott, 2013, Isogeometric boundary element analysis using unstructured T-splines, Comput. Methods Appl. Mech. Engrg., 254, 197, 10.1016/j.cma.2012.11.001
Peng, 2017, Linear elastic fracture simulation directly from CAD: 2D NURBS-based implementation and role of tip enrichment, Int. J. Fract., 204, 55, 10.1007/s10704-016-0153-3
Peng, 2017, Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth, Comput. Methods Appl. Mech. Engrg., 316, 151, 10.1016/j.cma.2016.05.038
Ginnis, 2014, Isogeometric boundary-element analysis for the wave-resistance problem using T-splines, Comput. Methods Appl. Mech. Engrg., 279, 425, 10.1016/j.cma.2014.07.001
Beer, 2016, Isogeometric boundary element analysis with elasto-plastic inclusions. part 1: plane problems, Comput. Methods Appl. Mech. Engrg., 308, 552, 10.1016/j.cma.2016.03.035
Beer, 2017, Isogeometric boundary element analysis with elasto-plastic inclusions. part 2: 3-D problems, Comput. Methods Appl. Mech. Engrg., 315, 418, 10.1016/j.cma.2016.11.007
Liu, 2018, Isogeometric FEM-BEM coupled structural-acoustic analysis of shells using subdivision surfaces, Internat. J. Numer. Methods Engrg., 113, 1507, 10.1002/nme.5708
Simpson, 2018, An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations, J. Comput. Phys., 362, 264, 10.1016/j.jcp.2018.01.025
Simpson, 2016, Acceleration of isogeometric boundary element analysis through a black-box fast multipole method, Eng. Anal. Bound. Elem., 66, 168, 10.1016/j.enganabound.2016.03.004
Li, 2018, Accelerating isogeometric boundary element analysis for 3-dimensional elastostatics problems through black-box fast multipole method with proper generalized decomposition, Internat. J. Numer. Methods Engrg., 114, 975, 10.1002/nme.5773
Nguyen, 2016, An isogeometric symmetric Galerkin boundary element method for two-dimensional crack problems, Comput. Methods Appl. Mech. Engrg., 306, 252, 10.1016/j.cma.2016.04.002
Feischl, 2015, Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations, Comput. Methods Appl. Mech. Engrg., 290, 362, 10.1016/j.cma.2015.03.013
Feischl, 2017, Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations, Numer. Math., 136, 147, 10.1007/s00211-016-0836-8
Simpson, 2014, Acoustic isogeometric boundary element analysis, Comput. Methods Appl. Mech. Engrg., 269, 265, 10.1016/j.cma.2013.10.026
Peake, 2015, Extended isogeometric boundary element method (XIBEM) for three-dimensional medium-wave acoustic scattering problems, Comput. Methods Appl. Mech. Engrg., 284, 762, 10.1016/j.cma.2014.10.039
Sören, 2017, Evaluation of hypersingular and nearly singular integrals in the isogeometric boundary element method for acoustics, Comput. Methods Appl. Mech. Engrg., 325, 488, 10.1016/j.cma.2017.07.025
Li, 2011, Isogeometric analysis and shape optimization via boundary integral, Comput. Aided Des., 43, 1427, 10.1016/j.cad.2011.08.031
Lian, 2016, Implementation of regularized isogeometric boundary element methods for gradient-based shape optimization in two-dimensional linear elasticity, Internat. J. Numer. Methods Engrg., 106, 972, 10.1002/nme.5149
Lian, 2017, Shape optimization directly from CAD: An isogeometric boundary element approach using T-splines, Comput. Methods Appl. Mech. Engrg., 317, 1, 10.1016/j.cma.2016.11.012
Sun, 2018, Structural shape optimization by IGABEM and particle swarm optimization algorithm, Eng. Anal. Bound. Elem., 88, 26, 10.1016/j.enganabound.2017.12.007
Kostas, 2015, Ship-hull shape optimization with a T-spline based BEM–isogeometric solver, Comput. Methods Appl. Mech. Engrg., 284, 611, 10.1016/j.cma.2014.10.030
Chen, 2018, An isogeometric approach of two dimensional acoustic design sensitivity analysis and topology optimization analysis for absorbing material distribution, Comput. Methods Appl. Mech. Engrg., 336, 507, 10.1016/j.cma.2018.03.025
Liu, 2017, Shape optimization of sound barrier using an isogeometric fast multipole boundary element method in two dimensions, Eng. Anal. Bound. Elem., 85, 142, 10.1016/j.enganabound.2017.09.009
Guiggiani, 1987, Direct computation of Cauchy principal value integrals in advanced boundary elements, Internat. J. Numer. Methods Engrg., 24, 1711, 10.1002/nme.1620240908
Svanberg, 1987, The method of moving asymptotes–a new method for structural optimization, Internat. J. Numer. Methods Engrg., 24, 359, 10.1002/nme.1620240207
Rokhlin, 1985, Rapid solution of integral equations of classical potential theory, J. Comput. Phys., 60, 187, 10.1016/0021-9991(85)90002-6
Li, 2019, An adaptive SVD–Krylov reduced order model for surrogate based structural shape optimization through isogeometric boundary element method, Comput. Methods Appl. Mech. Engrg., 349, 312, 10.1016/j.cma.2019.02.023