Structural shape optimization of three dimensional acoustic problems with isogeometric boundary element methods

L.L. Chen1, H. Lian2, Z. Liu3, H.B. Chen4, E. Atroshchenko5, S.P.A. Bordas2,6,7
1College of Architecture and Civil Engineering, Xinyang Normal University, PR China
2Institute for Computational Engineering, Faculty of Science, Technology and Communication, University of Luxembourg, Luxembourg
3College of Science and Engineering, University of Glasgow, UK
4CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
5School of Civil and Environmental Engineering, University of New South Wales, Sydney, Australia
6School of Engineering, Cardiff University, The Parade, CF24 3AA, Cardiff, UK
7China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC

Tài liệu tham khảo

Bordas, 2010, Alleviating the mesh burden in computational solid mechanics, Proc. ECT2010 Greengard, 1987, A fast algorithm for particle simulations, J. Comput. Phys., 73, 325, 10.1016/0021-9991(87)90140-9 Zheng, 2019, Fictitious eigenfrequencies in the BEM for interior acoustic problems, Eng. Anal. Bound. Elem., 104, 170, 10.1016/j.enganabound.2019.03.042 Beylkin, 1991, Fast wavelet transforms and numerical algorithms I, Comm. Pure Appl. Math., 44, 141, 10.1002/cpa.3160440202 Phillips, 1997, A precorrected-FFT method for electrostatic analysis of complicated 3-D structures, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 16, 1059, 10.1109/43.662670 Bebendorf, 2000, Approximation of boundary element matrices, Numer. Math., 86, 565, 10.1007/PL00005410 Perrey-Debain, 2003, Plane wave interpolation in direct collocation boundary element method for radiation and wave scattering: numerical aspects and applications, J. Sound Vib., 261, 839, 10.1016/S0022-460X(02)01006-4 Bériot, 2010, Plane wave basis in Galerkin BEM for bidimensional wave scattering, Eng. Anal. Bound. Elem., 34, 130, 10.1016/j.enganabound.2009.07.014 Peake, 2013, Novel basis functions for the partition of unity boundary element method for Helmholtz problems, Internat. J. Numer. Methods Engrg., 93, 905, 10.1002/nme.4411 Fischer, 2005, Fast BEM–FEM mortar coupling for acoustic–structure interaction, Internat. J. Numer. Methods Engrg., 62, 1677, 10.1002/nme.1242 Zhao, 2019, Topology optimization of exterior acoustic-structure interaction systems using the coupled FEM-BEM method, Internat. J. Numer. Methods Engrg., 82, 858 Chen, 2014, FEM/wideband FMBEM coupling for structural-acoustic design sensitivity analysis, Comput. Methods Appl. Mech. Engrg., 276, 1, 10.1016/j.cma.2014.03.016 Chen, 2016, Structural–acoustic sensitivity analysis of radiated sound power using a finite element/ discontinuous fast multipole boundary element scheme, Int. J. Numer. Methods Fluids, 82, 858, 10.1002/fld.4244 Chen, 2017, An adjoint operator approach for sensitivity analysis of radiated sound power in fully coupled structural-acoustic systems, J. Comput. Acoust., 25, 1750003, 10.1142/S0218396X17500035 Natarajan, 2017, A scaled boundary finite element formulation over arbitrary faceted star convex polyhedra, Eng. Anal. Bound. Elem., 80, 218, 10.1016/j.enganabound.2017.03.007 C. Marot, J. Pellerin, J.-F. Remacle, One machine, one minute, three billion tetrahedra, arXiv preprint arXiv:1805.08831, 2018. Christiansen, 2014, Topology optimization using an explicit interface representation, Struct. Multidiscip. Optim., 49, 387, 10.1007/s00158-013-0983-9 Christiansen, 2015, Combined shape and topology optimization of 3D structures, Comput. Graph., 46, 25, 10.1016/j.cag.2014.09.021 Lian, 2017, Combined shape and topology optimization for minimization of maximal von Mises stress, Struct. Multidiscip. Optim., 55, 1541, 10.1007/s00158-017-1656-x Zhou, 2018, Shape morphing and topology optimization of fluid channels by explicit boundary tracking, Internat. J. Numer. Methods Fluids, 88, 296, 10.1002/fld.4667 Wang, 2003, A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., 192, 227, 10.1016/S0045-7825(02)00559-5 Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008 Cottrell, 2006, Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 5257, 10.1016/j.cma.2005.09.027 Benson, 2010, Isogeometric shell analysis: The Reissner-Mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 276, 10.1016/j.cma.2009.05.011 Bazilevs, 2010, Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes, Comput. Methods Appl. Mech. Engrg., 199, 780, 10.1016/j.cma.2008.11.020 Bazilevs, 2008, Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput. Mech., 43, 3, 10.1007/s00466-008-0315-x De Lorenzis, 2011, A large deformation frictional contact formulation using NURBS-based isogeometric analysis, Internat. J. Numer. Methods Engrg., 10.1002/nme.3159 Nguyen, 2014, Nitsche’s method for two and three dimensional NURBS patch coupling, Comput. Mech., 53, 1163, 10.1007/s00466-013-0955-3 T. Khajah, X. Antoine, S. Bordas, Isogeometric finite element analysis of time-harmonic exterior acoustic scattering problems, arXiv preprint arXiv:1610.01694, 2016. Bazilevs, 2010, Isogeometric analysis using T-splines, Comput. Math. Appl., 199, 229 Nguyen-Thanh, 2011, Rotation free isogeometric thin shell analysis using PHT-splines, Comput. Methods Appl. Mech. Engrg., 200, 3410, 10.1016/j.cma.2011.08.014 Cirak, 2002, Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision, Comput. Aided Des., 34, 137, 10.1016/S0010-4485(01)00061-6 Scott, 2011, Isogeometric finite element data structures based on Bézier extraction of T-splines, Internat. J. Numer. Methods Engrg., 88, 126, 10.1002/nme.3167 Nguyen, 2015, Isogeometric analysis: an overview and computer implementation aspects, Math. Comput. Simulation, 117, 89, 10.1016/j.matcom.2015.05.008 Xu, 2013, Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method, J. Comput. Phys., 252, 275, 10.1016/j.jcp.2013.06.029 Xu, 2013, Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis, Comput. Aided Des., 45, 812, 10.1016/j.cad.2011.05.007 Politis, 2009, An isogeometric BEM for exterior potential-flow problems in the plane Simpson, 2012, A two-dimensional isogeometric boundary element method for elastostatic analysis, Comp. Methods Appl. Mech. Eng., 209–212, 87, 10.1016/j.cma.2011.08.008 Simpson, 2013, An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects, Comput. Struct., 118, 2, 10.1016/j.compstruc.2012.12.021 Scott, 2013, Isogeometric boundary element analysis using unstructured T-splines, Comput. Methods Appl. Mech. Engrg., 254, 197, 10.1016/j.cma.2012.11.001 Peng, 2017, Linear elastic fracture simulation directly from CAD: 2D NURBS-based implementation and role of tip enrichment, Int. J. Fract., 204, 55, 10.1007/s10704-016-0153-3 Peng, 2017, Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth, Comput. Methods Appl. Mech. Engrg., 316, 151, 10.1016/j.cma.2016.05.038 Ginnis, 2014, Isogeometric boundary-element analysis for the wave-resistance problem using T-splines, Comput. Methods Appl. Mech. Engrg., 279, 425, 10.1016/j.cma.2014.07.001 Beer, 2016, Isogeometric boundary element analysis with elasto-plastic inclusions. part 1: plane problems, Comput. Methods Appl. Mech. Engrg., 308, 552, 10.1016/j.cma.2016.03.035 Beer, 2017, Isogeometric boundary element analysis with elasto-plastic inclusions. part 2: 3-D problems, Comput. Methods Appl. Mech. Engrg., 315, 418, 10.1016/j.cma.2016.11.007 Liu, 2018, Isogeometric FEM-BEM coupled structural-acoustic analysis of shells using subdivision surfaces, Internat. J. Numer. Methods Engrg., 113, 1507, 10.1002/nme.5708 Simpson, 2018, An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations, J. Comput. Phys., 362, 264, 10.1016/j.jcp.2018.01.025 Simpson, 2016, Acceleration of isogeometric boundary element analysis through a black-box fast multipole method, Eng. Anal. Bound. Elem., 66, 168, 10.1016/j.enganabound.2016.03.004 Li, 2018, Accelerating isogeometric boundary element analysis for 3-dimensional elastostatics problems through black-box fast multipole method with proper generalized decomposition, Internat. J. Numer. Methods Engrg., 114, 975, 10.1002/nme.5773 Nguyen, 2016, An isogeometric symmetric Galerkin boundary element method for two-dimensional crack problems, Comput. Methods Appl. Mech. Engrg., 306, 252, 10.1016/j.cma.2016.04.002 Feischl, 2015, Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations, Comput. Methods Appl. Mech. Engrg., 290, 362, 10.1016/j.cma.2015.03.013 Feischl, 2017, Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations, Numer. Math., 136, 147, 10.1007/s00211-016-0836-8 Simpson, 2014, Acoustic isogeometric boundary element analysis, Comput. Methods Appl. Mech. Engrg., 269, 265, 10.1016/j.cma.2013.10.026 Peake, 2015, Extended isogeometric boundary element method (XIBEM) for three-dimensional medium-wave acoustic scattering problems, Comput. Methods Appl. Mech. Engrg., 284, 762, 10.1016/j.cma.2014.10.039 Sören, 2017, Evaluation of hypersingular and nearly singular integrals in the isogeometric boundary element method for acoustics, Comput. Methods Appl. Mech. Engrg., 325, 488, 10.1016/j.cma.2017.07.025 Li, 2011, Isogeometric analysis and shape optimization via boundary integral, Comput. Aided Des., 43, 1427, 10.1016/j.cad.2011.08.031 Lian, 2016, Implementation of regularized isogeometric boundary element methods for gradient-based shape optimization in two-dimensional linear elasticity, Internat. J. Numer. Methods Engrg., 106, 972, 10.1002/nme.5149 Lian, 2017, Shape optimization directly from CAD: An isogeometric boundary element approach using T-splines, Comput. Methods Appl. Mech. Engrg., 317, 1, 10.1016/j.cma.2016.11.012 Sun, 2018, Structural shape optimization by IGABEM and particle swarm optimization algorithm, Eng. Anal. Bound. Elem., 88, 26, 10.1016/j.enganabound.2017.12.007 Kostas, 2015, Ship-hull shape optimization with a T-spline based BEM–isogeometric solver, Comput. Methods Appl. Mech. Engrg., 284, 611, 10.1016/j.cma.2014.10.030 Chen, 2018, An isogeometric approach of two dimensional acoustic design sensitivity analysis and topology optimization analysis for absorbing material distribution, Comput. Methods Appl. Mech. Engrg., 336, 507, 10.1016/j.cma.2018.03.025 Liu, 2017, Shape optimization of sound barrier using an isogeometric fast multipole boundary element method in two dimensions, Eng. Anal. Bound. Elem., 85, 142, 10.1016/j.enganabound.2017.09.009 Guiggiani, 1987, Direct computation of Cauchy principal value integrals in advanced boundary elements, Internat. J. Numer. Methods Engrg., 24, 1711, 10.1002/nme.1620240908 Svanberg, 1987, The method of moving asymptotes–a new method for structural optimization, Internat. J. Numer. Methods Engrg., 24, 359, 10.1002/nme.1620240207 Rokhlin, 1985, Rapid solution of integral equations of classical potential theory, J. Comput. Phys., 60, 187, 10.1016/0021-9991(85)90002-6 Li, 2019, An adaptive SVD–Krylov reduced order model for surrogate based structural shape optimization through isogeometric boundary element method, Comput. Methods Appl. Mech. Engrg., 349, 312, 10.1016/j.cma.2019.02.023