Structural reliability software and calculation tools: a review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bhamare SS, Yadav OP, Rathore A (2007) Evolution of reliability engineering discipline over the last six decades: a comprehensive review. Int J Reliab Saf 1(4):377. https://doi.org/10.1504/IJRS.2007.016256
Hasofer AM, Lind NC (1974) Exact and invariant second-moment code format. J Eng Mech 100:111–121
Rackwitz R, Flessler B (1978) Structural reliability under combined random load sequences. Comput Struct 9(5):489–494. https://doi.org/10.1016/0045-7949(78)90046-9
Guo T, Sause R, Frangopol DM, Li A (2010) Time-dependent reliability of PSC box-girder bridge considering creep, shrinkage, and corrosion. J. Bridge Eng 16(1):29–43. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000135
Necati Catbasa F, Susoy M, Frangopol DM (2008) Structural health monitoring and reliability estimation: long span truss bridge application with environmental monitoring data. Eng Struct 30(9):2347–2359
Frangopol DM, Imai K (2000) Geometrically nonlinear finite element reliability analysis of structural systems. II: applications. Comput Struct 77(6):693–709. https://doi.org/10.1016/S0045-7949(00)00011-0
Bezih K, Chateauneuf A, Kalla M, Bacconnet C (2015) Effect of soil–structure interaction on the reliability of reinforced concrete bridges. Ain Shams Eng J 6(3):755–766. https://doi.org/10.1016/j.asej.2015.01.007
Der Kiureghian A, Haukaas T, Fujimura K (2006) Structural reliability software at the University of California, Berkeley. Struct Saf 28(1–2):44–67. https://doi.org/10.1016/j.strusafe.2005.03.002
Thoft-Christensen P, Baker MJ (1982) Structural reliability theory and its applications. Springer, Berlin
Sun J, Hong HP (2002) Effect of reinforcement corrosion on reliability of bridge girders. Civ Eng Environ Syst 19(1):67–85. https://doi.org/10.1080/10286600212160
Bigaud D, Ali O (2014) Time-variant flexural reliability of RC beams with externally bonded CFRP under combined fatigue-corrosion actions. Reliab Eng Syst Saf 131:257–270. https://doi.org/10.1016/j.ress.2014.04.016
Val DV, Stewart MG, Melchers RE (1998) Effect of reinforcement corrosion on reliability of highway bridges. Eng Struct 20(11):1010–1019
Righiniotis TD (2006) Effects of increasing traffic loads on the fatigue reliability of a typical welded bridge detail. Int J Fatigue 28:873–880
Tu B, Fang Z, Dong Y, Frangopol DM (2017) Time-variant reliability analysis of widened deteriorating prestressed concrete bridges considering shrinkage and creep. Eng Struct 153:1–16. https://doi.org/10.1016/j.engstruct.2017.09.060
Phoon K-K, Kulhawy FH (1999) Evaluation of geotechnical property variability. Can Geotech J 36(4):625–639
Youssef Abdel Massih D, Soubra AH (2008) Reliability-based analysis of strip footings using response surface methodology. Int J Geomech 8(2):134–143
Liu P, Der Kiureghian A (1986) Multivariate distribution models with prescribed marginals and covariances. Probab Eng Mech 1(2):105–112
Hohenbichler M, Rackwitz R (1981) Non-normal dependent vectors in structural safety. J Eng Mech Div 107(6):1227–1238
Lu Z, Cai C, Zhao Y (2017) Structural reliability analysis including correlated random variables based on third-moment transformation. J Struct Eng 143(8):04017067
Lu Z, Cai C, Zhao Y, Leng Y, Dong Y (2020) Normalization of correlated random variables in structural reliability analysis using fourth-moment transformation. Struct Saf 82:101888
Farreras-Alcover I, Chryssanthopoulos MK, Andersen JE (2016) Data-based models for fatigue reliability of orthotropic steel bridge decks based on temperature, traffic and strain monitoring. Int J Fatigue. https://doi.org/10.1016/j.ijfatigue.2016.09.019
Li H, Li S, Ou J, Li H (2012) Reliability assessment of cable-stayed bridges based on structural health monitoring techniques. Struct Infrastruct Eng 8(9):829–845
Lee YJ, Lee SH, Lee HS (2015) Reliability assessment of tie-down cables for cable-stayed bridges subject to negative reactions: case study. J. Bridge Eng. 20(10):04014108
Darmawan MS, Stewart MG (2007) Spatial time-dependent reliability analysis of corroding pretensioned prestressed concrete bridge girders. Struct Saf 29(1):16–31. https://doi.org/10.1016/j.strusafe.2005.11.002
Strauss A, Wendner R, Bergmeister K, Costa C (2012) Numerically and experimentally based reliability assessment of a concrete bridge subjected to chloride-induced deterioration. J Infrastruct Syst 19(2):166–175
Kwon K, Frangopol DM (2010) Bridge fatigue reliability assessment using probability density functions of equivalent stress range based on field monitoring data. Int J Fatigue 32(8):1221–1232. https://doi.org/10.1016/j.ijfatigue.2010.01.002
Enrico Z (2013) Chapter 3: Monte Carlo Simulation: the Method. In: Pham H (ed) The Monte Carlo Simulation Method for System Reliability and Risk Analysis, Springer series in reliability engineering. Springer, London
Enright MP, Frangopol DM (1998) Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion. Eng Struct 20(11):960–971. https://doi.org/10.1016/S0141-0296(97)00190-9
Val DV, Chernin L (2009) Serviceability reliability of reinforced concrete beams with corroded reinforcement. J Struct Eng 135(8):896–905
Marsh PS, Frangopol DM (2008) Reinforced concrete bridge deck reliability model incorporating temporal and spatial variations of probabilistic corrosion rate sensor data. Reliab Eng Syst Saf 93(3):394–409. https://doi.org/10.1016/j.ress.2006.12.011
Pedroni N, Zio E, Cadini F (2017) Advanced Monte Carlo methods and applications. ASCE-ASME J Risk Uncertain Eng Syst Part Civ Eng. https://doi.org/10.1061/AJRUA6.0000921
Youssef Abdel Massih D, Soubra AH, Low BK (2008) Reliability-based analysis and design of strip footingsagainst bearing capacity failure. J Geotech Geoenviron Eng 134(7):917–928
Au SK, Beck JL (1999) A new adaptive importance sampling scheme for reliability calculations. Struct Saf 21(2):135–158
Haldar A, Mahadevan S (1995) First-order and second-order reliability methods. In: Sundararajan C (ed) Probabilistic structural mechanics handbook. Springer, Boston
Lee OS, Kim DH (2006) The reliability estimation of pipeline using FORM, SORM and Monte Carlo Simulation with FAD. J Mech Sci Technol 12:2124–2135
Siacara AT, Beck AT, Futai MM (2020) Reliability analysis of rapid drawdown of an earth dam using direct coupling. Comput Geotech 118:103336
Mohammadkhani-Shali S (2007) Study of systeme redundancy in bridges : failure mechanism analysis using response surface methods. Engineering Sciences, Ecole des Ponts ParisTech
Dias-da-Costa D, Neves LAC, Gomes S, Hadigheh SA, Fernandes P (2019) Time-dependent reliability analyses of prestressed concrete girders strengthened with CFRP laminates. Eng. Struct. 196:109297
Youn BD, Choi KK, Du L (2005) Adaptive probability analysis using an enhanced hybrid mean value (HMV+) method. Struct Multidiscip Optim 29(2):134–148. https://doi.org/10.1007/s00158-004-0452-6
Dey A, Miyani G, Sil A (2019) Reliability assessment of reinforced concrete (RC) bridges due to service loading. Innov Infrastruct Solut 4(1):9
Gollwitzer S, Kirchgäßner B, Fischer R, Rackwitz R (2006) PERMAS-RA/STRUREL system of programs for probabilistic reliability analysis. Struct Saf 28(1–2):108–129. https://doi.org/10.1016/j.strusafe.2005.03.008
Fricke W, Müller-Schmerl A (1999) Consideration of crack propagation behaviour in the design of cyclic loaded structures. In: Marquis G, Solin J (eds) European structural integrity society, vol 23. Elsevier Science, London, UK, pp 163–172
Schneider CR, Muhammed A, Sanderson RM (2001) Predicting the remaining lifetime of in-service pipelines based on sample inspection data. Insight 43(2):102–104
Bhardwaj U, Teixeira AP, Guedes Soares C, Samdani Azad M, Punurai W (2019) Reliability assessment of thick high strength pipelines with corrosion defects. Int. J. Press. Vessels Pip. 177:103982. https://doi.org/10.1016/j.ijpvp.2019.103982
Liu P, Lin H, Der Kiureghian A (1989) CalREL user manual. Department of Civil Engineering, University of California, Berkeley
Taylor RL (2017) FEAP, A finite element analysis program. Department of Civil and Environmental Engineering, University of California, Berkeley, California
Maymon G (1998) Some engineering applications in random vibrations and random structures. American Institute of Aeronautics and Astronautics, Reston
Zhai X, Stewart MG (2010) Structural reliability analysis of reinforced grouted concrete block masonry walls in compression. Eng Struct 32:106–114. https://doi.org/10.1016/j.engstruct.2009.08.020
Zhao Y, Zhai X (2018) Reliability assessment of aluminum alloy columns subjected to axial and eccentric loadings. Struct Saf 70:1–13. https://doi.org/10.1016/j.strusafe.2017.09.001
Southwest Research Institute (1999) Probabilistic Structural Analysis Methods (PSAM) for Select Space Propulsion System Components,” NASA/CR-1999-208872
Riha D, Enright M, Millwater H, Wu YT, Thacker B (2000) Probabilistic engineering analysis using the NESSUS software. In: 41st structures, structural dynamics, and materials conference and exhibit. https://doi.org/10.2514/6.2000-1512
Foshi RO, Folz B (1990) RELAN: reliability analysis user’s manual. University of B.C, Vancouver
Folz B, Foschi RO (1989) Reliability-based design of wood structural systems. J Struct Eng 115(7):1666–1680. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:7(1666)
Wang YT, Foschi RO (1992) Random field stiffness properties and reliability of laminated wood beams. Struct Saf 11(3–4):191–202. https://doi.org/10.1016/0167-4730(92)90013-D
Li M, Lam F, Foschi RO (2009) Seismic reliability analysis of diagonal braced and structural-panel-sheathed wood shear walls. J Struct Eng 135(5):587–596. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000008
Liu X, Lam F (2017) Reliability analysis of lateral bracing forces in metal-plated wood trusses. J. Struct. Eng. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001908
Wilson R (1995) A user’s guide to the probabilistic fracture mechanics computer code: STAR 6—Version 2.2. Nuclear Electric, Engineering Division, Memorandum TEM/MEM/0005/95
Wilson R, Haines N (1989) Probabilistic integrity assessment of reactor pressure circuits. In: Transactions of the 10th international conference on structural mechanics in reactor technology, Anaheim, vol. M: Structural Reliability, pp 133–138
Schuëller GI, Pradlwarter HJ (2006) Computational stochastic structural analysis (COSSAN)—a software tool. Struct Saf 28(1–2):68–82. https://doi.org/10.1016/j.strusafe.2005.03.005
De Angelis M, Patelli E, Beer M (2015) Advanced line sampling for efficient robust reliability analysis. Struct Saf 52:170–182. https://doi.org/10.1016/j.strusafe.2014.10.002
Patelli E (2017) COSSAN: a multidisciplinary software suite for uncertainty quantification and risk management. In: Ghanem R, Higdon D, Owhadi H (eds) Handbook of uncertainty quantification. Springer, Cham
Tvedt L (2006) Proban—probabilistic analysis. Struct Saf 28(1–2):150–163. https://doi.org/10.1016/j.strusafe.2005.03.003
Contri P (1996) Optimal organization of structural analysis and site inspection for the seismic requalification of Paks NPP. Prog. ASP-7654; RAT-DMM-643/95
Det Norske V (1995) Guideline for offshore structural reliability analysis : examples for tension legs platforms. Det Norske Veritas, Norway, 95–3198, rev.02
Liu Q, Orisamolu IR, Chernuka MW (1993) COMPASS Version 1 user’s manual. Martec Limited, Halifax
Akpan UO, Yuen B, Lin F (2015) Probability of failure of damaged ship structures phase IV report, TR-15-18 Rev 02
Akpan U, Wong F (2002) The role of probabilistic sensitivity analysis in assessing the service life of solid rocket motors. In: 43rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Denver, Colorado. DOI: 10.2514/6.2002-1714
Akpan UO, Rushton PA, Koko TS (2006) Probabilistic reliability and integrity assessment of large diameter steel compliant risers (SCR) for ultra-deepwater operations: volume 2—reliability analysis. Martec Technical Report, TR-06-27, Rev 1
Marek P, GusÏtar M, Permaul K (1999) Transition from partial factors method to Simulation-based reliability assessment in structural design. Probab Eng Mech 14(1–2):105–118. https://doi.org/10.1016/S0266-8920(98)00021-6
Marek P, Guštar M, Krejsa M (1998) Simulation-based reliability assessment: tool for efficient steel design. J Constr Steel Res 46(1):156–158. https://doi.org/10.1016/S0143-974X(98)80011-4
Janas P, Krejsa M (2002) Reliability Assessment of Statically Indeterminate Steel Arches, presented at the Reliability and diagnostics of transport structures and means. University of Pardubice, Czech Republic
Burdekin FM, Hamour W (2002) Partial safety factors for SINTAP procedure. AEA Technology Consulting, London
Nelson A, Sanderson DJ, Thurlbeck SD (2004) Stress redistribution in platform substructures due to primary member damage and its effect on structural reliability. HSE Books, London
Abdi F, Minnetyan L (1999) Development of GENOA progressive failure parallel processing software systems. Alpha STAR Corporation& NASA John H. Glenn Research Center, NASA/CR—1999-209404
Estes A, Frangopol DM (1998) RELSYS: a computer program for structural system reliability analysis. Struct Eng Mech 6(8):901–919. https://doi.org/10.12989/sem.1998.6.8.901
Frangopol DM, Strauss A, Kim S (2008) Bridge reliability assessment based on monitoring. J Bridge Eng 13(3):258–270. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:3(258)
Saydam D, Frangopol DM (2013) Applicability of simple expressions for bridge system reliability assessment. Comput Struct 114–115:59–71. https://doi.org/10.1016/j.compstruc.2012.10.004
Estes A, Imai K, Frangopol D (1999) NRELSYS: new reliability of system—software documentation. University of Colorado, Boulder, pp 99–100
Enright MP, Frangopol DM (2000) RELTSYS: a computer program for life prediction of deteriorating systems. Struct Eng Mech 9(6):557–568. https://doi.org/10.12989/sem.2000.9.6.557
Enright MP, Frangopol DM (1999) Reliability-based condition assessment of deteriorating concrete bridges considering load redistribution. Struct Saf 21(2):159–195. https://doi.org/10.1016/S0167-4730(99)00015-6
Cesare M, Sues R (1999) ProFES probabilisitc finite element system—Bringing probabilistic mechanics to the desktop. In: 40th structures, structural dynamics, and materials conference and exhibit, St. Louis, MO, USA. https://doi.org/10.2514/6.1999-1607
Wu YT, Shin Y, Sues RH, Cesare MA (2006) Probabilistic function evaluation system (ProFES) for reliability-based design. Struct Saf 28(1–2):164–195. https://doi.org/10.1016/j.strusafe.2005.03.006
Dillström P (2000) ProSINTAP—a probabilistic program implementing the SINTAP assessment procedure. Eng Fract Mech 67(6):647–668. https://doi.org/10.1016/S0013-7944(00)00078-3
Lindley C, Bateson PH, Bannister AC, Pike DTJ (2002) Contributions on the lamellar tearing and fracture resistance of heavy sections for use in seismic loading conditions. Prog Struct Eng Mater 4(1):105–116. https://doi.org/10.1002/pse.97
Bourinet JM (2010) Ferum 4.1 user’s guide. Inst. Fr. Mécanique Avancée IFMA Clermont-Ferrand Fr
Dehghani H, Javad Fadaee M (2014) Probabilistic assessment of torsion in concrete beams externally strengthened with CFRP composites. Mater. Struct. 47(5):885–894. https://doi.org/10.1617/s11527-013-0100-y
Pradelle S (2017) Évaluation de la durée de vie du béton armé : approche numériqueglobale vis-à-vis de la pénétration d’agents agressifs. Université Paris-Est
Pillai RG, Hueste MD, Gardoni P, Trejo D, Reinschmidt KF (2010) Time-variant service reliability of post-tensioned, segmental, concrete bridges exposed to corrosive environments. Eng Struct 32(9):2596–2605. https://doi.org/10.1016/j.engstruct.2010.04.032
Cheng J (2014) Random field-based reliability analysis of prestressed concrete bridges. KSCE J Civ Eng 18:1436. https://doi.org/10.1007/s12205-014-0253-4
Hazay M, Vigh LG (2017) Seismic fragility assessment of steel frames: application of advanced reliability analysis. In: EUROSTEEL 2017, Copenhagen, Denmark, vol 1, pp 2993–3002. https://doi.org/10.1002/cepa.351
Guimarães H, Matos JC, Henriques AA (2018) An innovative adaptive sparse response surface method for structural reliability analysis. Struct Saf 73:12–28. https://doi.org/10.1016/j.strusafe.2018.02.001
Cremona C (2010) ReliabTbx release 1.5-structural reliability toolbox. IFSTTAR, France
Sétra (2012) Théoie de la fiabilité: Application à l’évaluation structurale des ouvrages d’art. Sétra, février
Reh S, Beley JD, Mukherjee S, Khor EH (2006) Probabilistic finite element analysis using ANSYS. Struct Saf 28(1–2):17–43. https://doi.org/10.1016/j.strusafe.2005.03.010
Wang K (2006) The probabilistic study of heat treatment process for railroad wheels using ANSYS/PDS. In: Proceedings of the 13th international ANSYS conference, Pittsburgh, PA
Vlahinos A (2008) Applying six sigma to drive down product defects. ANSYS Adv 2(2):4
Lin HZ, Khalessi M, Lin M, Fox E, Elseifi M (2001) Development of UNIPASS—a unified probabilistic assessment software system. In: 19th AIAA applied aerodynamics conference, Anaheim, CA, USA. https://doi.org/10.2514/6.2001-1644
Lin HZ, Khalessi MR (2006) General outlook of UNIPASS™ V5.0: a general-purpose probabilistic software system. Struct Saf 28(1–2):196–216. https://doi.org/10.1016/j.strusafe.2005.03.009
Elseifi M, Khalessi M, Lin H-Z, Rogers G, Torng T (2001) Probabilistic analysis of thick composite plates with manufacturing and material uncertainties. In 19th AIAA applied aerodynamics conference, Anaheim, CA, USA. https://doi.org/10.2514/6.2001-1612
Green L, Lin HZ, Khalessi M (2002) Probabilistic methods for uncertainty propagation applied to aircraft design. In: 20th AIAA applied aerodynamics conference, p 3140. https://doi.org/10.2514/6.2002-3140
Lucas GH, Mercedes CR, David FV (2001) A probabilistic approach to model update. NASA/TM-2001-211039
Phimeca Engineering, France, “PhimecaSoft,” (2018) [Online]. Available: http://www.phimeca.com/Fonctionnalites-de-PhimecaSoft?lang=fr
Lemaire M, Pendola M (2006) phimeca-soft. Struct Saf 28(1–2):130–149. https://doi.org/10.1016/j.strusafe.2005.03.007
Amirat A, Mohamed-Chateauneuf A, Chaoui K (2006) Reliability assessment of underground pipelines under the combined effect of active corrosion and residual stress. Int J Press Vessels Pip 83(2):107–117. https://doi.org/10.1016/j.ijpvp.2005.11.004
Bendjoudi Y, Becker E, Bigot R, Amirat A (2017) Contribution in the evaluation of a performance index of hot forging dies. Int J Adv Manuf Technol 88(5–8):1187. https://doi.org/10.1007/s00170-016-8829-4
Akgül F, Frangopol D (2002) RELNET: reliability of system networks—software documentation. University of Colorado, Boulder
Akgül F, Frangopol DM (2004) Lifetime performance analysis of existing prestressed concrete bridge superstructures. J Struct Eng 130(12):1889–1903. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:12(1889)
Akgül F, Frangopol DM (2004) Computational platform for predicting lifetime system reliability profiles for different structure types in a network. J Comput Civ Eng 18(2):92–104. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:2(92)
Novák D, Vořechovský M, Teplý B (2014) FReET: software for the statistical and reliability analysis of engineering problems and FReET-D: degradation module. Adv Eng Softw 72:179–192. https://doi.org/10.1016/j.advengsoft.2013.06.011
Doležel J, Šomodíková M, Lehký D, Novák D (2015) Application of probabilistic methods for the assessment of structural load bearing capacity. Adv Mater Res 1106:90–93. https://doi.org/10.4028/www.scientific.net/AMR.1106.90
Novák D, Routil L, Novák L, Slowik O, Strauss A, Krug B (2015) Database of fracture-mechanical concrete parameters and its implementation into reliability software FREET. In: 13th international probabilistic workshop (IPW 2015), Liverpool, UK, pp 137–147. https://doi.org/10.3850/978-981-09-7963-8_067
Andrianov G et al. (2007) Open TURNS, an Open source initiative to Treat Uncertainties, Risks’N Statistics in a structured industrial approach. In: ESREL’2007 safety and reliability conference, Stavenger, Norway
Baudin M, Dutfoy A, Iooss B, Popelin A (2016) OpenTURNS: an industrial software for uncertainty quantification in simulation. In: Ghanem R, Higdon D, Owhadi H (eds) Handbook of uncertainty quantification. Springer, Cham, pp 2001–2038
Haukaas T, Der Kiureghian A (2004) Finite element reliability and sensitivity methods for performance-based earthquake engineering. PEER, 2003/14
Mazzoni S, Mckenna F, Scott MH, Fenves GL (2007) Open system for earthquake engineering simulation user command language manual. University of California, Berkeley
Scott MH, Kidarsa A, Higgins C (2008) Development of bridge rating applications using OpenSees and Tcl. J Comput Civ Eng 22:264–271. https://doi.org/10.1061/(asce)0887-3801(2008)22:4(264)
Liang H, Haukaas T, Royset JO (2007) Reliability-based optimal design software for earthquake engineering applications. Can J Civ Eng 34(7):856–869. https://doi.org/10.1139/l07-002
Hoseini Vaez SR, Sarvdalir S (2018) Reliability-based optimization of One-Bay 2-D steel frame. KSCE J Civ Eng 22:2433. https://doi.org/10.1007/s12205-017-1881-2
Shokrgozar HR, Mansouri I, Hu JW (2018) Comparison of seismic reliability and risk assessment for special and intermediate steel moment frames. KSCE J Civ Eng 22(9):3452. https://doi.org/10.1007/s12205-018-0283-4
KrishnaGudipati V, EunJeong C (2019) A framework for optimization of target reliability index for a building class based on aggregated cost. Struct Saf. https://doi.org/10.1016/j.strusafe.2019.101873
Mahsuli M, Haukaas T (2013) Computer program for multimodel reliability and optimization analysis. J Comput Civ Eng 27(1):87–98. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000204
Open Library of Models in Rt, University of B.C., Vancouver, Canada (2012)
Shabani MM, Taheri A, Daghigh M (2017) Reliability assessment of free spanning subsea pipeline. Thin-Wall Struct 120:116–123. https://doi.org/10.1016/j.tws.2017.08.026
Shoaei P, Mahsuli M (2019) Reliability-based design of steel moment frame structures isolated by lead-rubber bearing systems. Structures 20:765–778. https://doi.org/10.1016/j.istruc.2019.06.020
Shojaeian A, Bocchini P, Naito C (2016) ProCAAT. https://www.lehigh.edu/~pab409/Appoggio/ProCAATtutorial.pdf
Naito C, Fox J, Bocchini P, Khazaali M (2020) Chloride migration characteristics and reliability of reinforced concrete highway structures in Pennsylvania. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.117045
Sundar VS (2018) ART for safety assessment theory. Available at https://sites.google.com/site/sundarvelkur/art